In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
This article analyzes the use and limitations of nonmonetary contract incentives in managing third-party accountability in human services. In-depth case studies of residential care homes for the elderly and integrated family service centers, two contrasting contracting contexts, were conducted in Hong Kong. These two programs vary in service programmability and service interdependency. In-depth interviews with 17 managers of 48 Residential Care Homes for the Elderly (RCHEs) and 20 managers of 10 Integrated Family Service Centers (IFSCs) were conducted. Interviews with the managers show that when service programmability was high and service interdependency was low, nonmonetary contract incentives such as opportunities for self-actualization professionally or reputation were effective in improving service quality from nonprofit and for-profit contractors. When service programmability was low and service interdependency was high, despite that only nonprofit organizations were contracted, many frontline service managers reported that professional accountability was undermined by ambiguous service scope, performance emphasis on case turnover, risk shift from public service units and a lack of formal accountability relationships between service units in the service network. The findings shed light on the limitations of nonmonetary contract incentives.
COVID-19 pandemic has caused many design bid build projects to suffer losses. Design bid build or DBB has the disadvantage of depth partnering. The research purpose is to reveal the depth of partnering of DBB, the characteristics of existing partnering in DBB through detection in each project life cycle in DBB, then efforts to increase DBB partnering to partnering in integrated project delivery (IPD). The methodology used is secondary data from three project DBB, then validation using focused group discussions (FGD) with expert judgment, then the Delphi method to analyse and propose recommendations. This project recommends that DBB project can improve the project performance so stakeholder can increase partnering toward integrated project delivery (IPD) partnering. This research can be used for increasing partnering in DBB projects towards partnering in IPD. This research will produce strategic recommendations that can be utilized by stakeholders (owner, contractor, designer) in improving project performance to generate great value for the project, will result in long-term project sustainability, improve relationships, and learn valuable lessons for future projects. DBB projects usually experience many problems due to the competitive nature of partnering for owners, contractors, and designers, so it is necessary to develop an overall strategy as an option to improve partnering in DBB project contracts. This research will help create a sustainable project by the owner, contractor, and designer.
Google Earth images in the Marche Region of Central Italy revealed a circular structure consisting of a ring system made up of concentric hills and valleys. Cartography, DEM, geological, and available geophysical data were used to constrain the possible origin of the structure. Located in the Messinian foredeep deposits of the Central Apennines, it has a rim diameter of 3.75 km and a central uplift connected to its southernmost part. As it was formed in the clays of the Lower Pliocene, and clays are believed to have emerged definitively after the Upper Pliocene, its age might be constrained to the Lower Pleistocene. Similar concentric structures are usually found in impact craters, sedimentary domes, and volcanic landforms. As salt domes and magmatic activity are not found in this region, this study seeks to validate the results of previous work that it was the result of an ancient impact crater of hydrological, brachyanticline, or clayey diapiric origins. Specifically, an observed second ring portion with a curvature radius about double the first in size will be investigated in this work. This second ring portion appears to be concentric to the first one and is visible along its northern and western parts. Although double concentric rings are usually due to impact craters, the absence of the ring portion in the other two directions and the probable deviation of a river, deduced by studying hydrography, support the hypothesis that it might be of clay diapir origin.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
The market demand for uniformity and productivity of commercial carrot roots has prioritized hybrid materials over open-pollinated varieties. In this sense, the objective of this work was to estimate the combining ability of carrot genitors for root productivity and resistance to leaf scorch. The experiments were conducted in Gama, DF, in the agricultural years 2012/13 and 2013/14. We evaluated 33 carrot hybrids, originated from crosses between three male-sterile populations, with 11 male-fertile S2 lines, all the genitors being of tropical origin. At 90 days after sowing, the severity of the leaf blight disease was estimated in the plots. At 100 days after sowing, harvesting was performed and root yield characters were evaluated. Analysis of variance and partial diallel analysis were performed for each year and jointly for both years. It was found that additive and non-additive genes are important in the manifestation of root yield and leaf blight resistance traits in carrot hybrids. The male-sterile parents with higher overall combining ability for root productivity are strains LM-649 and LM-650 and, among the male-fertile, strain LM-555-2-2. The best hybrids for root yield and leaf blight resistance are LM-649 × LM-555-11-1, LM-650 × LM-555-7-1 and LM-650 × LM-554-8-1.
Copyright © by EnPress Publisher. All rights reserved.