This paper aims to advance the knowledge in the domain of youth entrepreneurship and empowerment in the United Arab Emirates (UAE). The rationale is to address the gap in knowledge on entrepreneurship and youth empowerment in the UAE by analyzing strategies and initiatives that support empowering millennials to achieve sustainable development, with the aim of promoting youth entrepreneurship and supporting sustainable economic development. The primary research question guiding this study is: “What strategies and initiatives in the UAE foster the empowerment of the millennial generation for sustainable development?” This study relies on a mixed methodology that combines a descriptive approach, content analysis, and data meta-analysis, with the aim of exploring the relationship between youth entrepreneurship and sustainable development in the United Arab Emirates. with a focus on the future sustainability leaders (FSL) program. While the FSL program demonstrates its significance in promoting youth entrepreneurship and empowerment, it also reveals certain limitations in its design and implementation that may hinder sustainable economic development. To address these challenges and support youth entrepreneurship, the paper proposes three essential action-oriented approaches: promoting participatory diversity and engagement, managing entrepreneurship drivers, and ensuring access to essential support mechanisms. These recommendations are intended to guide multilateral agencies, voluntary sectors, and private entities in the UAE in designing, evaluating, and implementing effective youth entrepreneurship programs. This paper underscores the importance of continued discourse and critical input to refine existing theories and establish a normative framework for youth entrepreneurship and empowerment. Such efforts are crucial for poverty reduction, sustainable development, and the promotion of intergenerational equity.
We present an innovative enthalpy method for determining the thermal properties of phase change materials (PCM). The enthalpy-temperature relation in the “mushy” zone is modelled by means of a fifth order Obreshkov polynomial with continuous first and second order derivatives at the zone boundaries. The partial differential equation (PDE) for the conduction of heat is rewritten so that the enthalpy variable is not explicitly present, rendering the equation nonlinear. The thermal conductivity of the PCM is assumed to be temperature dependent and is modelled by a fifth order Obreshkov polynomial as well. The method has been applied to lauric acid, a standard prototype. The latent heat and the conductivity coefficient, being the model parameters, were retrieved by fitting the measurements obtained through a simple experimental procedure. Therefore, our proposal may be profitably used for the study of materials intended for heat-storage applications.
Nanomaterials are a recently discovered type of material that is gaining importance and receiving a lot of attention from researchers. Due to their numerous advantages, scholars are studying nanoparticles extensively. The articles in this issue that discuss the various applications of nanoparticles are very interesting. The majority of these articles focus on the use of nanoparticles in the medical sector and their contributions to environmental protection.
Nanomaterials stand as transformative elements across diverse domains, ranging from biotechnology, aircraft, aviation, and space exploration to medicine, health, environmental preservation, resources, energy, and aerospace. This issue, comprising nine original research articles and two insightful reviews, we embark on a journey to unravel the multifaceted uses of nanomaterials, with a special emphasis on their contributions to environmental protection and medicine. Delving into the unique traits of various nanomaterials, our aim is to provide readers with a comprehensive understanding that transcends conventional boundaries, fostering a deeper appreciation for the impact of nanomaterials.
Three-dimensionally cross-linked polymer nanocomposite networks coated nano sand light-weight proppants (LWPs) were successfully prepared via ball-milling the macro sand and subsequently modifying the resultant nano sand with sequential polymer nanocomposite coating. The modified nano sand proppants had good sphericity and roundness. Thermal analyses showed that the samples can withstand up to 411 ℃. Moreover, the proppant samples’ specific gravity (S.G.) was 1.02–1.10 g/cm3 with excellent water dispersibility. Therefore, cross-linked polymer nanocomposite networks coated nano sand particles can act as potential candidates as water-carrying proppants for hydraulic fracturing operations.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
Copyright © by EnPress Publisher. All rights reserved.