Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Karren and mass movements are described. Mass movements taking place on karren terrains are studied in case of bare karren and covered karren. Mass movements occur at rinnenkarren, grikes, Schichtfugenkarren, and tropical karren. This study describes that karren features increase the chance of the development of certain mass movements. It is approached in a theoretical way that in the case of different preconditions (e.g., change of slope angle), what kind of mass movements are triggered by different karren features. The most common mass movement is triggered by karren which are debris creep, gelisolifluction, rock avalanche, collapses, creep and solifluction.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Communicative language is an important part of daily communication, and mastering its usage proficiently can leave a good impression on people. There are significant differences in the greetings between China and Japan. These differences also reflect the different cultures of the two countries. Focusing on the greetings of the first meeting in daily life, this paper selects TV plays with more daily exchanges, collects language materials of TV play types related to social life, friendship, schools, companies, etc., and makes a comparative analysis of the performance and functions of Japanese and Chinese greetings, and makes a study of Sociolinguistics.
Copyright © by EnPress Publisher. All rights reserved.