Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Cities are no longer viewed as creatures with a linear-climax-established cycle but as ecosystems with dynamic and complicated processes, with people as the primary component. Thus, we must understand urban ecology’s structure and function to create urban planning and appreciate the mechanisms, dynamics, and evolution that connect human and ecological processes. The ecological city (ecocity) is one of the city conceptions that has evolved with the perspective of urban ecology history. The concept of ecocity development within urban ecology systems pertains to recognizing cities as complex ecosystems primarily influenced by human activities. In this context, individuals actively engage in dynamic problem-solving approaches to address environmental challenges to ensure a sustainable and satisfactory quality of life for future generations. Therefore, it is necessary to study how ecocity has developed since it was initiated today and how it relates to the urban ecology perspective. This study aims to investigate the progression of scholarly publications on ecocity research from 1980 to 2023. Additionally, it intends to ascertain the trajectory of ecological city research trends, establish connections between scientific concepts, and construct an ecological city science network using keyword co-occurrence analysis from the urban ecology perspective. The present study used a descriptive bibliometric analysis and literature review methodology. The data was obtained by utilizing the Lens.org database, was conducted using the VOS (Visualization of Similarities) viewer software for data analysis. The urban ecology research area ecology of cities can be studied further from density visualization of ecosystem services and life cycle assessment. Finally, the challenges and future agenda of ecocity research include addressing humans by modeling functions or processes that connect humans with ecosystems (ecology of cities), urban design, ecological imperatives, integration research, and improving the contribution to environmental goals, spatial distribution, agriculture, natural resources, policy, economic development, and public health.
Since the onset of the COVID-19 pandemic, academic research has primarily focused on the challenges posed by flexible working arrangements. However, there has been a lack of exploration into managers’ intentions to either promote or reject remote work. This paper utilizes a TAM analysis to examine managers’ attitudes and motivations towards implementing telework in a sample of European companies. Our findings reveal that this intention is largely influenced by their perception of its usefulness. Additionally, telework is more likely to be accepted when managerial teams believe that those who hold significance to them also support the implementation of flexible work practices in their companies. Our research contributes to the existing literature by considering the impact of job performance, quality of output, and digital skills on telework adoption. The results confirm that skills related to communication and team building are crucial competencies for successfully implementing telework. The ability of leaders to effectively build, motivate, recognize, and hold accountable teams in virtual environments can make all the difference.
In an era characterized by technological advancement and innovation, the emergence of Electronic Government (e-Government) and Mobile Government (m-Government) represents significant developments. Previous studies have explored acceptance models in this domain. This research presents a novel acceptance model tailored to the context of m-Government adoption in Jordan, integrating the Information System (IS) Success Factor Model, Hofstede’s Cultural Dimensions Theory, and considerations for law enforcement factors. The primary objective of this study is to investigate the strategies for promoting and enhancing the adoption of m-Government applications within Jordanian society. Data collection involved the distribution of 203 electronic questionnaires, with subsequent analysis conducted using SPSS. The findings reveal the acceptance and significance of three hypotheses: Information Quality, Service Quality, and Power Distance. Additionally, the study incorporates the influence of Law Enforcement factors, contributing to a comprehensive understanding of the multifaceted determinants shaping the adoption of m-Government services in Jordan.
Copyright © by EnPress Publisher. All rights reserved.