In the current digital age, financial development has seen substantial shifts, particularly in buying and selling activities that are now facilitated by digital technology or electronic transactions (e-commerce), which offer convenience at relatively low costs. However, micro, small, and medium enterprises (MSMEs), which play a crucial role in the economy, must adapt to these advancements to sustain and grow their businesses. Despite the widespread adoption of e-commerce, many MSMEs have yet to fully capitalize on this technology. Limited knowledge often leads to hesitation in embracing e-commerce opportunities. Consequently, this study seeks to explore how innovation, information management, and e-commerce adoption impact MSME performance and its implications for business sustainability. The research targets MSME owners and managers in the Jabodetabek area (Jakarta, Bogor, Depok, Tangerang, and Bekasi) and nearby regions, with a sample of 420 individuals selected through random sampling. Data was collected through an online survey (Google Forms) administered to MSME management. The survey items were tested for validity and reliability, and the data analysis was conducted using various regression analyses with SEM-PLS and Smart-PLS3. The study’s findings highlight the following key points: 1) E-commerce adoption significantly enhances information management, which supports MSME sustainability; 2) E-commerce adoption also improves performance through better information management, further promoting MSME sustainability; 3) While technology is important, e-commerce adoption is the primary factor driving MSME sustainability, with technology serving as a secondary factor.
Climate change is a pressing global challenge that requires immediate action. To address this issue effectively, it is essential to engage and empower the younger generation who will shape the future. This abstract presents the experience of Mohamed Bin Zayed University for Humanities (MBZUH) in UAE in promoting climate action through youth empowerment and environmental education.MBZUH has recognized the significance of incorporating environmental education into its curriculum to foster a generation of environmentally conscious individuals. Through a multidimensional approach, the university has developed innovative strategies to empower students, enabling them to become active participants in addressing climate change. These strategies encompass both formal and informal education, leveraging various platforms and partnerships to create a comprehensive learning environment.This study delves into the initiatives undertaken by MBZUH to empower youth in climate action. It explores the incorporation of environmental education across disciplines, integrating sustainability principles into existing courses, and offering specialized programs focused on environmental science and climate studies. Additionally, it highlights the university's efforts in promoting hands-on learning experiences, such as field trips, research projects, and community engagement, to deepen students' understanding of climate issues and inspire practical action.Furthermore, the study examines the role of MBZUH's collaboration with local and international organizations, governmental bodies, and the wider community in fostering youth empowerment and climate action. It showcases successful partnerships that have resulted in impactful initiatives, including awareness campaigns, capacity-building workshops, and youth-led environmental projects.By sharing the experience of MBZUH, this study aims to provide valuable insights and best practices for promoting climate action through youth empowerment and environmental education. It underscores the importance of empowering the next generation with the knowledge, skills, and motivation to become effective agents of change in addressing climate challenges.
The Urabá region, known for its banana production, faces significant challenges due to seasonal droughts that affect crop productivity. The implementation of innovative technologies, such as efficient irrigation systems, is presented as a potential solution to improve the sustainability and profitability of plantations. This study validates the implementation of an irrigation system in a banana (Musa spp.) plantation located in the region of Urabá, in order to meet the water needs of the crop during periods of drought. A case study was carried out in a banana plantation in the region of Urabá, considering the maximum and minimum monthly losses due to drought, and a random sample was used to measure the weight before and after the implementation of the irrigation system, in order to carry out an economic analysis. The study shows that the implementation of a sprinkler irrigation system increases the average weight of the harvested bunches by 20%, which is reflected in an annual increase of 30.3% of exported boxes, obtaining satisfactory results in terms of internal rate of return, cost-benefit ratio and return on investment. The implementation of irrigation systems makes it possible to increase competitiveness in international markets, especially in regions such as Urabá, where the use of these technologies is still incipient.
Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
It is critical for urban and regional planners to examine spatial relationships and interactions between a port and its surrounding urban areas within a region’s spatial structure. This paper seeks to develop a targeted framework of causal relationships influencing the spatial structure changes in the Bushehr port-city. Hence, the study utilizes Fuzzy Cognitive Maps (FCMs), a computational technique adept at analyzing complex decision-making processes. FCMs are employed to identify concepts that act as drivers or barriers in the spatial structure changes of Bushehr port-city, thereby elucidating the causal relationships within this context. Additionally, the study evaluates these concepts’ relative significance and interrelationships. Data was collected through interviews with ten experts from diverse backgrounds, including specialists, academics, policymakers, and urban managers. The insights from these experts were analyzed using FCMapper and Pajek software to construct a collective FCM, which depicts the influential and affected concepts within the system. The resulting collective FCM consists of 16 concepts, representing the varied perspectives and expertise of the participants. Among these, the concepts of management and planning reform, economic growth of the city-port, and port development emerged as the three most central concepts. Moreover, the effects of all influential concepts on the spatial structure change in Bushehr port-city were evaluated through simulations conducted across four different scenarios. The analysis demonstrated that the system experiences the most significant impact under the fourth scenario, where the most substantial changes are observed in commercial and industrial growth and the planning of port-city separation policies.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Copyright © by EnPress Publisher. All rights reserved.