The new oil derivatives transportation scheme proposed by the 2013 Mexican Energy Reform allowed new participants to enter the sector. The new legal framework requires fulfilling many requirements and corresponding duties for the transportation of oil products. The Mexican government already has an institution dedicated to measuring the regulatory cost of each federal procedure. This work aims to quantify the regulatory costs associated with the procedures and their compliance to obtain permits for transporting oil products by truck. We use the standard cost method to measure these costs, considering all associated costs. The results showed that two government offices did not adequately measure these costs. They did not consider relevant information on frequency and opportunity costs, resulting in undervaluation and leading to wrong expectations. As a result of this research, we provide a more accurate way of estimating these costs, which brings greater certainty in the budgeting of these projects and, therefore, increases the probability of survival and success.
This paper presents an effective method for performing audio steganography, which would help in improving the security of information transmission. Audio steganography is one of the techniques for hiding secret messages within an audio file to maintain communication secrecy from unwanted listeners. Most of these conventional methods have several drawbacks related to distortion, detectability, and inefficiency. To mitigate these issues, a new scheme is presented which combines the techniques of image interpolation with LSB encoding. It selects non-seed pixels to allow reversibility and diminish distortion in medical images. Our technique also embeds a fragile watermarking scheme to identify any breach during transmission to recover data securely and reliably. A magic rectangle has also been used for encryption to enhance data security. This paper proposes a robust, low-distortion audio steganography technique that provides high data integrity with undetectability and will have wide applications in sectors like e-healthcare, corporate data security, and forensic applications. In the future, this approach will be refined for broader audio formats and overall system robustness.
In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
Governments intervene in the housing market via implementing various monetary, fiscal, foreign exchange and credit policies. By this, the housing market undergoes cycles of boom and bust as well as significant swings in value added and housing prices. Therefore, the main goal of this research is to consider the effect of the government’s change on the monetary and financial policy’s impact on the business cycles of the housing sector during the period of 1978–2020. On the other hand, we estimate the impact of monetary and fiscal policies on housing business cycles concerning government’s change. To calculate housing business cycles (boom and busts), the housing value added were initially de-trended using the Hodrick–Prescott filter. This paper takes a novel use of the threshold regression model with government’s change as threshold variable. According to the study’s findings, there are three threshold effects (two threshold levels or three regimes) of monetary and fiscal policy on housing business cycles. For instance, the money supply coefficient in the first regime was −1.68, indicating that the effect of monetary policy in this regime is countercyclical. in the second and third regimes, it was 0.19 and 0.03, respectively; indicating its alignment with the housing business cycle. Regarding the estimated models, we may derive several interesting conclusions. In first regime, the money supply is countercyclical and government expenditure is pro-cyclical. This means that monetary policy exacerbates recession and fiscal policy weakens it. in the second and third regimes, the money supply is pro-cyclical and government expenditure is countercyclical. As a result, while formulating their monetary policies, governments should give the housing sector more consideration. Additionally, when putting this policy into practice, the housing sector has to be carefully examined.
Community policing has emerged as a vital instrument for combatting crime and enhancing public safety in South Africa. As a result, it has the capacity to go beyond traditional law enforcement functions as a mediator in disputes, fostering improved relationships between the police and the communities where they work. This paper analyses the implementation of community policing strategies by the South African police with the purpose of resolving conflicts. This study aims to address social crime prevention-related concerns through community policing methods in the Galeshewe police area within the Francis Baard policing regions of the Sol Plaatje Municipality, South Africa. The paper examines the tactics that community police employ to enforce the law, avoid social issues, and manage conflict resolution in the communities. A qualitative method and descriptive design were employed. Comprehensive document analysis, semi-structured interviews, and observations were employed as data collection strategies. An inductive reasoning model was used to analysis data. The findings of the study demonstrated that community policing plays an important role in optimizing problem mapping and it increases public knowledge of the importance of upholding security and order in the different police operations that support the community policing program.
The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
Copyright © by EnPress Publisher. All rights reserved.