This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
In Côte d'Ivoire, the government and its development partners have implemented a national strategy to promote agroforestry and reforestation systems as a means to combat deforestation, primarily driven by agricultural expansion, and to increase national forest cover to 20% by 2045. However, the assessment of these systems through traditional field-based methods remains labor-intensive and time-consuming, particularly for the measurement of dendrometric parameters such as tree height. This study introduces a remote sensing approach combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation contexts. The methodology involved two main stages: first, the collection of floristic and dendrometric data, including tree height measured with a laser rangefinder, across eight (8) agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree height estimation and associated error analysis. Floristic analysis identified 506 individual trees belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A comparative analysis between ground-based and LiDAR-derived tree heights showed a strong correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE = 1.6722 m). However, a stratified analysis revealed substantial variation in estimation accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as an effective tool for the rapid and reliable estimation of tree height in heterogeneous agroforestry and reforestation systems.
This study investigates non-academic employees’ perceptions of their line managers’ leadership styles at a private university in Malaysia and how these perceptions influence their intention to remain employed. Employing a qualitative approach and the path-goal theory as a theoretical framework, data were collected through purposive sampling from 10 non-academic employees and analyzed thematically using NVivo 12 software. The findings reveal that a supportive and participative leadership style fosters an informal leadership dynamic between line managers and subordinates. Informal leadership behaviors encompass affective qualities and effective communication that enable the development of close relationships outside the workplace, facilitating increased employee engagement and motivation levels. Consequently, this approach notably improves employee retention. This study offers a comprehensive understanding of informal leadership styles contributing to enhanced human resource management at the private university while providing an inclusive perspective on employees’ perceptions and their intention to remain employed. Finally, we propose a model of employees’ perception of leadership styles as the main driver that better serves their intention to stay in organizations.
In recent decades, the redevelopment of waterfronts in global cities has become a focal point for large-scale real estate investments, often driven by neoliberal policies. These projects, characterized by the increasing involvement of state agencies, aim to transform obsolete industrial areas into lucrative spaces for tourism, commerce, and luxury living. This article scrutinizes the intricate dynamics of state-led waterfront re-development, through the lens of Istanbul’s Galataport project. It analyzes the multifaceted dimensions of the transformation process, shedding light on the historical backdrop, socio-political underpinnings, and economic imperatives that have shaped the development of Galataport from 2002 to 2022. Through a comprehensive analysis of primary sources, including governmental reports, policy documents, and scholarly literature, the article accentuates the pivotal role of the state and state actors in orchestrating the transformation of Istanbul’s urban landscape. Furthermore, it examines the implications of the Galataport project on urban governance and socio-cultural and spatial dynamics. It concludes that the central government pursued a speculative entrepreneurial approach in the Galataport project, clearing various legal obstacles while neglecting public interest. This case study takes the first step towards a comprehensive critical re-evaluation of the recent urban development/governance model to contribute to a nuanced understanding of contemporary urban/waterfront development paradigms in Türkiye and similar geographies.
This article using thematic and content analysis investigated the contribution of innovation in achieving sustainable economic development. The objective of the bibliometric research was to assess the literature on this subject it identified research trends, ideas, and authors who contributed to this area so that future research and policy directions could be suggested. The data was derived from the Scopus database and was extracted between January 2020 and February 2024 by applying inclusion and exclusion criteria. The Scopus database search yielded 66 articles, published between 2020 and February 2024. Scopus analytics and Microsoft Excel were used for descriptive analysis and VOS Viewer software was used for network visualization of keywords. The descriptive analysis showed the trajectory of research, the prolific authors, their publication outlets, authors affiliation, and county of origin of the documents. The prolific visualization showed five clusters: red, green, blue, purple, and yellow. The main clusters are economic development, alternative energy, sustainable development, and innovation. This research showed where consideration should be given to drive sustainability and sustainable economic development. This research outcome will assist government agencies, corporations, and non-profit organizations in planning appropriate action and policies to support innovative and renewable energy initiatives so that participation in those fields could enhance the opportunity to achieve sustainable economic development.
The aim was to examine the relationships between selected demographic and psychographic factors and consumers' willingness to accept content generated by advanced technological innovations (AIGC) in social infrastructure. The sample consisted of 1,308 respondents. Spearman's correlation coefficient was used to examine the relationships between ordinal variables. To assess the differences between groups of respondents, a one-way analysis of variance was used, during which multiple linear regression analysis was used to confirm the predictive power of awareness and experience in relation to AI-generated content in relation to the tendency to accept such content. The study confirmed a statistically significant but weak negative relationship between the age of respondents and their willingness to accept AIGC, with younger age groups showing a slightly higher rate of acceptance. Respondents' attitudes toward the use of personal data through AI and their overall awareness of technological trends had a more significant impact on acceptance. The findings show that respondents who are open to data collection through AI technologies show a significantly higher level of acceptance of automatically generated content. Similarly, respondents who positively evaluate the current quality of AIGC have higher expectations for the future transformation of marketing strategies and media practices. The decisive factors in the social infrastructure for the acceptance of AIGC are not so much the age of the respondents, but rather their awareness, technological literacy, and level of trust in the technology itself. The study therefore recommends increasing transparency and public awareness about the use of AI in marketing and media practices in order to strengthen consumer confidence in automated content.
Copyright © by EnPress Publisher. All rights reserved.