Silymarin, a bioactive compound derived primarily from the seeds and fruit of the milk thistle (Silybum marianum) plant, has garnered increasing attention in recent years due to its potential applications in agriculture. This comprehensive review explores the multifaceted role of silymarin in agricultural practices, shedding light on its chemistry, biological activities, and diverse applications. The chemical structure and properties of silymarin are elucidated, emphasizing its unique solubility, stability, and bioavailability, which render it suitable for agricultural use. A significant portion of the review is dedicated to examining the biological activities of silymarin, which encompasses its antioxidant properties. The underlying mechanisms responsible for these activities are explored, highlighting their potential as a natural solution for mitigating environmental stressors that adversely affect crop health and productivity. Illustrative examples from research studies and practical applications underscore its effectiveness in safeguarding agricultural yields and ensuring food security. Furthermore, the review delves into the potential of silymarin to enhance crop growth, yield, and quality. Mechanisms through which silymarin influences plant physiology and metabolism are examined, providing valuable insights into its role as a growth-promoting agent in agriculture. The review concludes with a forward-looking examination of the prospects of silymarin in agriculture, highlighting emerging trends and areas of innovation that hold promise for sustainable and resilient farming systems. In summary, this review consolidates the current body of knowledge surrounding silymarin’s potential in agriculture. It underscores the versatility of silymarin as a natural tool for crop protection, growth enhancement, and environmental sustainability, offering valuable insights for researchers, practitioners, and policymakers seeking innovative approaches to address the challenges of modern agriculture.
The central government of China has intensively guided regional integration and policy coordination towards the development of digital governance in the last ten years. The Guangdong-Hong Kong-Macao Greater Bay was one of the most important regions of China expected to accelerate regional development through policy coordination and establishment of digital infrastructures. This article adopted the method of content analysis to explore the policy transitions of digital governance in the Greater Bay including policy contents (in terms of policy objectives and instruments) and policy networks. Based on our empirical analysis, we found that top-down guidance from the central government did not necessarily generate regional coordination. Different governments of the same region could start policy coordination from shared policy objectives and policy instruments and establish innovative governance frameworks to achieve consensus. Therefore, regional coordination could be fulfilled.
This paper aims to investigate local communities’ participation in eco-tourism projects by using the community of Situ Cisanti located in Tarumajaya Village, West Java as a case. Data were gathered through observation, in-depth interviews, and documentation analysis. Observations and in-depth interviews were conducted simultaneously for two months, from September to October 2021. In-depth interviews were conducted with 15 informants from the elements; village government officials of Tarumajaya, Perhutani, and local communities who participated in the Situ Cisanti eco-tourism project, which was completed through a documents analysis. According to the findings, local community participation in Situ Cisanti eco-tourism consists of conservation and economic participation. Conservation participation is demonstrated by their participation in restoration and greening activities such as reforestation, etc. in Situ Cisanti and its surroundings, whereas economic participation is demonstrated by the establishment of stalls, culinary, coffee, souvenir, and homestay businesses as a result of Situ Cisanti eco-tourism. Furthermore, the existence of this eco-tourism has empowered women because new business opportunities that arise are not only run by men but also by women. As a result, this study implies that the participation of local eco-tourism communities not only has an impact on empowering conservation knowledge and economics, but it can also imply women empowerment.
Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package (ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters with BisGMA, another component of dental composites, along with experimental results, is carried out in the present investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA.
Malaria is a mosquito-borne infectious disease that affects humans and poses a severe public health problem. Nigeria has the highest number of global cases. Geospatial technology has been widely used to study the risks and factors associated with malaria hazards. The present study is conducted in Ibadan, Oyo State, Nigeria. The objective of this study is to map out areas that are at high risk of the prevalence of malaria by considering a good number of factors as criteria that determine the spread of malaria within Ibadan using open-source and Landsat remote sensing data and further analysis in GIS-based multi-criteria evaluation (MCE). This study considered factors like climate, environmental, socio-economic, and proximity to health centers as criteria for mapping malaria risk. The MCE used a weighted overlay of the factors to produce an element at-risk map, a malaria hazard map, and a vulnerability map. These maps were overlaid to produce the final malaria risk map, which showed that 72% of Ibadan has a risk of malaria prevalence. Identification and delineation of risk areas in Ibadan would help policymakers and decision-makers mitigate the hazards and improve the health status of the state.
Copyright © by EnPress Publisher. All rights reserved.