This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
The economic viability of a photovoltaic (PV) installation depends on regulations regarding administrative, technical and economic conditions associated with self-consumption and the sale of surplus production. Royal Decree (RD) 244/2019 is the Spanish legislation of reference for this case study, in which we analyse and compare PV installation offers by key suppliers. The proposals are not optimal in RD 244/2019 terms and appear not to fully contemplate power generation losses and seem to shift a representative percentage of consumption to the production period. In our case study of a residential dwelling, the best option corresponds to a 5 kWp installation with surplus sale to the market, with a payback period of 18 years and CO2 emission reductions of 1026 kg/year. Demand-side management offers a potential improvement of 6%–21.8%. Based on the increase in electricity prices since 2020, the best option offers savings of up to €1507.74 and amortization in 4.24 years. Considering costs and savings, sale to the market could be considered as the only feasible regulatory mechanism for managing surpluses, accompanied by measures to facilitate administrative procedures and guarantees for end users.
Using time series data covering the years 1980 to 2020, this study examines the effects of government spending, population growth, and economic expansion on unemployment in the context of South Africa. The study’s variables include government spending, population growth, and economic growth as independent factors, and unemployment as the dependent variable. To ascertain the study’s outcomes, basic descriptive statistics, the Vector Error Correction Model (VECM), the Johansen Cointegration Procedures, the Augmented Dicky-Fuller Test (ADF), and diagnostic tests were used. Since all the variables are stationary at the first difference, the ADF results show that there isn’t a unit root issue. According to the Johansen cointegration estimation, there is a long-term relationship amongst the variables. Hence the choice of VECM to estimate the outcomes. Our results suggests that a rise in government spending will result in a rise in South Africa’s unemployment rate. The findings also suggest that there is a negative correlation between unemployment and population growth. This implies that as the overall population grows, unemployment will decline. Additionally, the findings suggest that unemployment and economic growth in South Africa are positively correlated. This contradicts a number of economic theories, including Keynesian and Okuns Law, which hold that unemployment and economic growth are inversely correlated.
The COVID-19 pandemic has fundamentally transformed the global education landscape, compelling institutions to adopt e-learning as an essential tool to sustain academic activities. This research examines the critical impact of e-learning on arts and science college students in Coimbatore, with an emphasis on its influence on their readiness for campus recruitment. Using a survey of 300 students, this study investigates their perceptions of online education, highlighting both its advantages, such as flexibility and accessibility, and its challenges, including engagement barriers and technical limitations. Data was collected through structured questionnaires and analyzed using statistical methods to draw meaningful insights. The research also explores the efficacy of online assessments in recruitment processes and assesses students’ awareness of available e-learning platforms and courses. The urgency of this study lies in addressing the pressing need to optimize digital education models as institutions globally transition toward blended learning post-pandemic. The findings underline the dual potential and limitations of e-learning, concluding with actionable recommendations to enhance its effectiveness, particularly in preparing students for competitive employment opportunities.
The objective of this research was to evaluate the unit rates of MSW generation in Cumba in the years 2016 and 2022. The calculations were based on the weights of the MSW disposed in the dump located 5 km from the city of Cumba since 2012. The GPC, physical composition, density, humidity were determined in the years 2016 and 2022, studied according to the methodology and group classification of Peruvian regulations. The results show that 5.45 Tn/day−1 are generated in 2016, 4.37 Tn/day−1 in 2022; according to its physical composition, 82% RO, 14% MICVC and 4% MISVC in 2016; 77% RO, 16% MICVC, 7% MISVC in 2022; density 137.90 kg/m−3 in 2016 and 172.69 kg/m−3 in 2022; humidity 67.67% in 2016 and 63.43% in 2022. It was also found that in 100.00% there is no solid waste treatment; Everything generated in homes, businesses and streets is evacuated to the final disposal site, which is a dump. In 2022, Cumba acquired 10 hectares to have adequate sanitary infrastructure and begin the closure and recovery of its current dump. This study will contribute to providing accurate data on MSW generation that allows the local government to promote the optimization of collection routes and schedules, resulting in cost savings and reduction of carbon emissions in the Amazon Region. Therefore, it is necessary to raise awareness at all levels of society through various means of communication and education, so that the risks of spreading health risks can be minimized by improving MSW management.
Management and efficiency have a fundamental impact on the performance of public hospitals, as well as on their philanthropic mission. Various studies have shown that the financial weaknesses of these entities affect the planning, setting of goals and objectives, monitoring, evaluation and feedback necessary to improve health systems and guarantee accessibility as an inalienable right. This study aims to analyze the management and efficiency of third-level and/or high-complexity hospitals in Colombia, through a statistical model that uses financial analysis and key performance indicators (KPIs) such as ROA, ROE and EBITDA. A non-experimental cross-sectional design is used, with an analytical-synthetic, documentary, exploratory and descriptive approach. The results show financial deficiencies in the hospitals evaluated; hence it is recommended to make adjustments in the operating cycle to increase efficiency rates. In addition, the use of the KPIs ROA and ROE under adjusted models is suggested for a more precise analysis of the financial ratios, since these adequately explain the variability of each indicator and are appropriate to evaluate hospital management and efficiency, but not in EBITDA ratio, hence the latter is not recommended to evaluate hospital efficiency reliably. This study provides relevant information for public health policy makers, hospital managers and researchers, in order to promote the efficiency and improvement of health services.
Copyright © by EnPress Publisher. All rights reserved.