Under the developing trend of artificial intelligence (AI) technology gradually penetrating all aspects of society, the traditional language education industry is also greatly affected [1]. AI technology has had a positive impact on college English teaching, but it also presents challenges and negative impacts. On the positive side, AI technology can provide personalized learning experiences, real-time feedback, and autonomous learning opportunities, and so on. However, it may also lead to a lack of communication between students and humans, resulting in a decline in students’ interpersonal skills, and cause students’ dependence on online learning resources as well as possible risks to student data privacy and security, and other negative impacts. To address these challenges, teachers can adopt the following countermeasures: improving teachers’ skills in the use of AI technology incorporated in the classroom, offering personalized instruction to reduce students’ dependence on AI technologies, emphasizing the cultivation of students’ humanistic literacy and interpersonal communication ability. Additionally, colleges and technology providers should strengthen data security and privacy protection to ensure the safety and confidentiality of student data. By implementing comprehensive measures, we can maximize the advantages of AI technology in college English teaching while overcoming potential issues and challenges.
In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
Urban trees are one of the valuable storage in metropolitan areas. Nowadays, a particular attention is paid to the trees and spends million dollars per year to their maintenance. Trees are often subjected to abiotic factors, such as fungi, bacteria, and insects, which lead to decline mechanical strength and wood properties. The objective of this study was to determine the potential degradation of Elm tree wood by Phellinus pomaceus fungi, and Biscogniauxia mediteranae endophyte. Biological decay tests were done according to EN 113 standard and impact bending test in accordance with ASTM-D256-04 standard. The results indicated that with longer incubation time, weight loss increased for both sapwood and heartwood. Fungal deterioration leads to changes in the impact bending. In order to manage street trees, knowing tree characteristics is very important and should be regularly monitored and evaluated in order to identify defects in the trees.
The issue of academic achievement among Chinese university students is emerging due to difficulties in finding employment. This study investigates the structural relationships between social support, goal orientation, and academic achievement with the aim of enhancing students’ academic performance and facilitating sustained employability. Data were collected from 202 college students in South China, revealing that students’ levels of social support, goal orientation, and academic achievement were all moderate. Lower-grade students, in comparison to higher-grade students, exhibited lower levels of social support, goal orientation, and academic achievement. Additionally, students from lower economic backgrounds tended to lack social support. Among the factors of social support, goal orientation, and academic achievement, there were positive correlations among these three variables. Social support significantly and positively influenced goal orientation and academic achievement. Specifically, the sub-factors of social support, school support, and teacher support had differential effects, with school support enhancing academic achievement and teacher support boosting goal orientation. Goal orientation also significantly and positively impacted students’ academic achievement, with the sub-factor of mastery goals having a stronger influence. Goal orientation partially mediated the relationship between social support and academic achievement. This study discusses limitations and provides insights for future research.
The electoral campaign that led Trump to win the presidential election focused on attacking the elites and using nationalist rhetoric, highlighting issues such as illegal immigration and economic globalization. Once in power, his trade policies, based on perceptions of unfair competition with countries like China, resulted in the imposition of high tariffs on key products. These measures were justified as necessary to protect domestic industries and jobs, although they triggered trade wars at the international level. This article examines the economic consequences of the protectionist policies implemented by the United States under the Trump administration. The protection of less competitive sectors aims to reduce imports, negatively affecting production and income in exporting countries, and limiting U.S. exports to these markets. Although some countries have experienced an increase in real income due to trade diversion, overall, income fluctuations have been negative.
Background: Bitcoin mining, an energy-intensive process, requires significant amounts of electricity, which results in a particularly high carbon footprint from mining operations. In the Republic of Kazakhstan, where a substantial portion of electricity is generated from coal-fired power plants, the carbon footprint of mining operations is particularly high. This article examines the scale of energy consumption by mining farms, assesses their share in the country’s total electricity consumption, and analyzes the carbon footprint associated with bitcoin mining. A comparative analysis with other sectors of the economy, including transportation and industry is provided, along with possible measures to reduce the environmental impact of mining operations. Materials and methods: To assess the impact of bitcoin mining on the carbon footprint in Kazakhstan, electricity consumption from 2016 to 2023, provided by the Bureau of National Statistics of the Republic of Kazakhstan, was used. Data on electricity production from various types of power plants was also analyzed. The Life Cycle Assessment (LCA) methodology was used to analyze the environmental performance of energy systems. CO2 emissions were estimated based on emission factors for various energy sources. Results: The total electricity consumption in Kazakhstan increased from 74,502 GWh in 2016 to 115,067.6 GWh in 2023. The industrial sector’s electricity consumption remained relatively stable over this period. The consumption by mining farms amounted to 10,346 GWh in 2021. A comparative analysis of CO2 emissions showed that bitcoin mining has a higher carbon footprint compared to electricity generation from renewable sources, as well as oil refining and car manufacturing. Conclusions: Bitcoin mining has a significant negative impact on the environment of the Republic of Kazakhstan due to high electricity consumption and resulting carbon dioxide emissions. Measures are needed to transition to sustainable energy sources and improve energy efficiency to reduce the environmental footprint of cryptocurrency mining activities.
Copyright © by EnPress Publisher. All rights reserved.