The rise of internet-based pharmacies has transformed the healthcare sector, giving patients access to medications, information, and direct interaction with pharmacists. While online pharmacies have become popular around the world, there are challenges hindering their widespread use in developing countries due to a limited understanding of the factors affecting their acceptance and usage. To bridge this knowledge gap, a study utilized a model combining the unified theory of acceptance and use of technology (UTAUT 2) with the technology acceptance model (TAM) to explore the drivers behind online pharmacy usage in Oman. Through this framework, twelve hypotheses were. A survey involving 378 individuals familiar with online pharmacies was conducted. Structural equation modeling (SEM) was applied to analyze the data and test these hypotheses. The results indicate that factors such as perceived expectancy effort expectancy and facilitating conditions hedonic motivation, habit perceived risk, technology trust, and technology awareness play roles in influencing the adoption of online pharmacies in Oman. The findings suggest that personal innovation plays a moderating role in the connection between perceived risk and behavioral intention, while it has a negative moderating influence on the relationship between technology trust and behavioral intention. Word of mouth was identified as a moderator in enhancing the correlation between behavioral intention and online pharmacy adoption. This research emphasizes the moderating relationship of personal innovation and word of mouth on shaping consumer attitudes towards online pharmacies and their acceptance. In summary, these results add to the existing knowledge on pharmacy adoption and in developed areas such as provide practical insights for online pharmacy providers to improve their offerings and attract a larger customer base.
The role of trace gases in the storage of heat in the atmosphere of the Earth and in the exchange of energy between the atmosphere and outer space is discussed. The molar heat capacities of the trace gases water vapor, carbon dioxide and methane are only slightly higher than those of nitrogen and oxygen. The contribution of trace gases carbon dioxide and methane to heat storage is negligible. Water vapor, with its higher concentration and conversion energies, contributes significantly to the heat storage in the atmosphere. Most of the heat in the Earth’s atmosphere is stored in nitrogen and oxygen, the main components of the atmosphere. The trace gases act as converters of infrared radiation into heat and vice versa. They are receivers and transmitters in the exchange of energy with outer space. The radiation towards space is favored compared to the reflection towards the surface of the Earth with increasing altitude by decreasing the density of the atmosphere and condensation of water vapor. Predictions of the development of the climate over a century by extrapolation are critically assessed.
Global energy agencies and commissions report a sharp increase in energy demand based on commercial, industrial, and residential activities. At this point, we need energy-efficient and high-performance systems to maintain a sustainable environment. More than 30% of the generated electricity has been consumed by HVAC-R units, and heat exchangers are the main components affecting the overall performance. This study combines experimental measurements, numerical investigations, and ANN-aided optimization studies to determine the optimal operating conditions of an industrial shell and tube heat exchanger system. The cold/hot stream temperature level is varied between 10 ℃ and 50 ℃ during the experiments and numerical investigations. Furthermore, the flow rates are altered in a range of 50–500 L/h to investigate the thermal and hydraulic performance under laminar and turbulent regime conditions. The experimental and numerical results indicate that U-tube bundles dominantly affect the total pumping power; therefore, the energy consumption experienced at the cold side is about ten times greater the one at the hot side. Once the required data sets are gathered via the experiments and numerical investigations, ANN-aided stochastic optimization algorithms detected the C10H50 scenario as the optimal operating case when the cold and hot stream flow rates are at 100 L/h and 500 L/h, respectively.
In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the "heat island effect", and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10−2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm−1 and 1632 cm−1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag's optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
Copyright © by EnPress Publisher. All rights reserved.