This study is about the influence of ethical leadership in both employees wellbeing and employee performance in Egypt’s tourism industry. Besides, it examines the indirect effect of ethical leadership on performance through its influence on the well-being of employees. The research was based on a quantitative research method and the surveys were self-administered, distributed and collected from a random sample of the employees of the Tourism companies. Analysis of 515 valid responses using structural equation modeling (SEM) unveiled several key findings: Ethical leadership is the main reason why both employee well-being and performance are significantly increased, and the fact that employee well-being is also the main reason for the improvement of performance. In addition, the employee well-being plays the role of the bridge between the ethical leadership and the performance. These insights are of great help for the decision-makers in the crafting of the effective leadership strategies that will lead to the creation of the thriving and high-performed work environments in Egyptian tourism sector.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Regional differentiation in the Russian Federation is considered to be high in terms of gross regional product (GRP) per capita level, growth rate, and other indicators. Inefficient use of region-specific spaces entails redistribution processes in order to maximize positive agglomeration effects throughout the country. These encompass economic restructuring based on production value-added chain extension and expanding inter-regional collaborative linkages. Besides, it is vital to assess the opportunities of individual Russian territories for participation therein. The research goal is to develop a scientifically based methodology to determine promising sectoral composition of the regional economies and that of spatial interactions. Such methodology would consider the feasibility of combining “smart” industrial specializations, regional resource potential, prevailing contradictions in the economic, innovative, and technological development of the country’s internal space. The proposed methodological approach opens the way to exploit the existing regional economic potential to the full, firstly, via establishing sectoral priorities of the region regarding the regulatory factors for the territorial capital to have a major effect on the increased potential GRP level; secondly, through benchmarking performance of the available development reserves within leading regions from homogeneous groups having similar characteristics and factor potentials; thirdly, via developing inter-regional integration prospects in terms of regional potential redistribution to ensure growth in potential gross domestic product. An extensive analytical and applied investigation of the proposed methodological approach was carried out from 2014 to 2020. Diversified estimates were obtained for a wide range of indicators due to evidences from 85 Russian regions and 13 types of economic activity. Such an integrated approach allows revealing actual imbalances and barriers that impede regional development, ensures the efficient use of production factors, and enables to trace ways to implement transformation policies and design effective regulatory mechanisms. The results provide arguments in favor of strengthening inter-regional connectivity and supporting inter-regional cooperation. This insight not only contributes to the academic discourse on complex development of a territory but also holds practical implications for policymakers and regional planners aimed at ensuring comprehensiveness and robustness of the evaluation supporting the decision-making process.
This study aims at analyzing the consumers’ perception towards online purchasing bakery goods on subjective norm (SN), computer self-efficacy (CSE), and technology acceptance model (TAM). Convenience sampling was used and the final sample of respondents was made of 344 participants, with an effective recovery rate of 96%, who bought bakery goods on the LINE social platform in Nantou County. Descriptive statistics, confirmatory factor analysis, and SEM structural equation model were used to test the research hypothesis. The results show that after adding external variables to the technology acceptance model (TAM), the application of purchasing bakery goods online is significant; the consumers’ behavior of purchasing bakery goods online, subjective norm (SN), computer self-efficacy (CSE), and technology acceptance model (TAM) have cause-and-effect relationships. This research concludes that it is easy, helpful, and worthy to use the Internet to buy bakery goods.
Copyright © by EnPress Publisher. All rights reserved.