The rapid growth of portable electronics and electric vehicles has intensified the global demand for high-performance energy storage devices with superior power density, energy density, and long cycle life. Among transition metal oxide-based electrode materials with potential for energy storage, we report the development of MnO2–V2O5 nanocomposite electrodes for supercapacitor applications. Pure MnO2 and V2O5 were successfully fabricated via a simple and economical sol–gel method, while (MnO2)x–(V2O5)1−x (x = 1, 0.75, 0.50, and 0) nanocomposites were fabricated through an ex situ method. Analytical techniques, including X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, were employed to investigate the structural, morphological, and optical properties of the electrodes. Furthermore, the electrochemical properties were systematically analysed using cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy. The (MnO2)0.75–(V2O5)0.25 nanocomposite demonstrated a remarkable specific capacitance of 666 F/g at a current density of 0.5 A/g in 1 M KOH electrolyte. Additionally, the electrode material exhibited an energy density of 23 Wh/kg and a power density of 450 W/kg, while maintaining a capacitance retention of 95% after 1,500 cycles. The incorporation of V2O5 boosted the conductivity and significantly optimised the number of lattice defects. This work substantially reinforces the importance of metal oxide-based nanocomposites for future energy storage devices.
The aim was to examine the relationships between selected demographic and psychographic factors and consumers' willingness to accept content generated by advanced technological innovations (AIGC) in social infrastructure. The sample consisted of 1,308 respondents. Spearman's correlation coefficient was used to examine the relationships between ordinal variables. To assess the differences between groups of respondents, a one-way analysis of variance was used, during which multiple linear regression analysis was used to confirm the predictive power of awareness and experience in relation to AI-generated content in relation to the tendency to accept such content. The study confirmed a statistically significant but weak negative relationship between the age of respondents and their willingness to accept AIGC, with younger age groups showing a slightly higher rate of acceptance. Respondents' attitudes toward the use of personal data through AI and their overall awareness of technological trends had a more significant impact on acceptance. The findings show that respondents who are open to data collection through AI technologies show a significantly higher level of acceptance of automatically generated content. Similarly, respondents who positively evaluate the current quality of AIGC have higher expectations for the future transformation of marketing strategies and media practices. The decisive factors in the social infrastructure for the acceptance of AIGC are not so much the age of the respondents, but rather their awareness, technological literacy, and level of trust in the technology itself. The study therefore recommends increasing transparency and public awareness about the use of AI in marketing and media practices in order to strengthen consumer confidence in automated content.
As social growth and educational concepts continue to evolve, college libraries, as hubs of cultural innovation and inheritance, are crucial in advancing the practice of great traditional culture aesthetic teaching. Based on the special status and resource advantages of college libraries, this paper explores the paths and approaches colleges libraries take in advancing the practice of aesthetic education of excellent traditional culture by combining the connotation and characteristics of excellent traditional culture. With a study of the research and case studies that concentrate on the planning of cultural events, the development of collection resources, and the use of digital innovation, it suggests a workable path. The goal is to give university libraries theoretical direction and useful references so they can carry out the aesthetic education of superior traditional culture.
This study investigates the core competencies essential for product designers to excel in cross-cultural global markets, with particular emphasis on implications for human resource development and organizational leadership. As design practices increasingly transcend cultural and geographical boundaries, designers are required to integrate advanced technical proficiency, creative problem-solving, technological adaptability, and cultural intelligence to create inclusive, socially responsible, and market-relevant products. Employing a mixed-methods approach—including focus groups and surveys with design professionals, industry executives, and academic leaders—the research identifies key competencies such as flexibility, intercultural communication, ethical integrity, and systems thinking. The findings underscore the necessity of balancing technical expertise with emotional intelligence and transformational leadership capabilities to effectively lead diverse, cross-functional teams. These competencies contribute significantly to fostering innovation, enhancing employee well-being and job satisfaction, and strengthening organizational resilience, thereby supporting sustainable human resource strategies. Furthermore, the study highlights the importance of continuous professional development and lifelong learning in cultivating culturally competent and ethically driven design talent. The insights offer strategic guidance for human resource professionals, organizational leaders, and educational institutions aiming to develop adaptive, inclusive, and future-ready design capabilities aligned with evolving global demands.
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Copyright © by EnPress Publisher. All rights reserved.