Journal Browser
Search
Advances in AI-based immunotoxicity prediction for cancer nanotheranostics
Aqsa Mehreen
Imran Khan Yousafzai
Nadia Noreen
Khadija Tariq
Nayab Ahsan
Abdullah Tariq
Noor Fatima
Characterization and Application of Nanomaterials 2025, 8(4); https://doi.org/10.24294/can11797
Submitted:15 Jun 2025
Accepted:17 Nov 2025
Published:19 Dec 2025
Abstract

The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.

References
1. Wang B, Hu S, Teng Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduction and Targeted Therapy. 2024; 9(1). doi: 10.1038/s41392-024-01889-y
2. Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Molecular Cancer. 2023; 22(1). doi: 10.1186/s12943-023-01865-0
3. Gawne PJ, Ferreira M, Papaluca M, et al. New opportunities and old challenges in the clinical translation of nanotheranostics. Nature Reviews Materials. 2023; 8(12): 783-798. doi: 10.1038/s41578-023-00581-x
4. Hofer S, Hofstätter N, Punz B, et al. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WIREs Nanomedicine and Nanobiotechnology. 2022; 14(6). doi: 10.1002/wnan.1804
5. Zhang Q, ed. Nanotoxicity. Springer New York; 2019. doi: 10.1007/978-1-4939-8916-4
6. Sun L, Liu H, Ye Y, et al. Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy. 2023; 8(1). doi: 10.1038/s41392-023-01642-x
7. Mehta M, Bui TA, Yang X, et al. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Materials Au. 2023; 3(6): 600-619. doi: 10.1021/acsmaterialsau.3c00032
8. Castillo RR, Lozano D, González B, et al. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery. 2019; 16(4): 415-439. doi: 10.1080/17425247.2019.1598375
9. Tavan M, Yousefian Z, Bakhtiar Z, et al. Carbon quantum dots: Multifunctional fluorescent nanomaterials for sustainable advances in biomedicine and agriculture. Industrial Crops and Products. 2025; 231: 121207. doi: 10.1016/j.indcrop.2025.121207
10. Lopes D, Lopes J, Pereira-Silva M, et al. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Military Medical Research. 2023; 10(1). doi: 10.1186/s40779-023-00453-z
11. Lin H, Wang Y, Gao S, et al. Theranostic 2D Tantalum Carbide (MXene). Advanced Materials. 2017; 30(4). doi: 10.1002/adma.201703284
12. Svenskaya Y, Garello F, Lengert E, et al. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics. 2021; 5(3): 362-377. doi: 10.7150/ntno.59458
13. Josefsson A, Nedrow JR, Park S, et al. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer. Cancer Research. 2016; 76(2): 472-479. doi: 10.1158/0008-5472.can-15-2141
14. Raju R, Abuwatfa WH, Pitt WG, et al. Liposomes for the Treatment of Brain Cancer—A Review. Pharmaceuticals. 2023; 16(8): 1056. doi: 10.3390/ph16081056
15. Venturini J, Chakraborty A, Baysal MA, et al. Developments in nanotechnology approaches for the treatment of solid tumors. Experimental Hematology & Oncology. 2025; 14(1). doi: 10.1186/s40164-025-00656-1
16. Li X, Li X, Zhang XN, et al. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biology & Medicine. 2016; 13(3): 339-348. doi: 10.20892/j.issn.2095-3941.2016.0055
17. Zhang M, Zhang Y, Hang L, et al. Bionic nanotheranostic for multimodal imaging-guided NIR-II-photothermal cancer therapy. Nanoscale. 2024; 16(12): 6095-6108. doi: 10.1039/d4nr00230j
18. Kumar A, Parmar A, Singh R, et al. Nanoscience: an overview about nanotheranostics for cancer treatment. Egyptian Journal of Basic and Applied Sciences. 2024; 11(1): 55-68. doi: 10.1080/2314808x.2023.2301281
19. Karnwal A, Sharma V, Kumar G, et al. Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications. Pharmaceutics. 2024; 16(9): 1114. doi: 10.3390/pharmaceutics16091114
20. Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Advances. 2023; 5(10): 2674-2723. doi: 10.1039/d2na00534d
21. Xuan L, Ju Z, Skonieczna M, et al. Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm. 2023; 4(4). doi: 10.1002/mco2.327
22. Selgrade MK. Immunotoxicity-The Risk is Real. Toxicological Sciences. 2007; 100(2): 328-332. doi: 10.1093/toxsci/kfm244
23. Panico S, Capolla S, Bozzer S, et al. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics. 2022; 14(12): 2605. doi: 10.3390/pharmaceutics14122605
24. Szebeni J. Complement Activation-Related Pseudoallergy Caused by Liposomes, Micellar Carriers of Intravenous Drugs, and Radiocontrast Agents. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2001; 18(6): 40. doi: 10.1615/critrevtherdrugcarriersyst.v18.i6.50
25. Karki R, Kanneganti TD. The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. Trends in Immunology. 2021; 42(8): 681-705. doi: 10.1016/j.it.2021.06.001
26. Yang L, Pijuan-Galito S, Rho HS, et al. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews. 2021; 121(8): 4561-4677. doi: 10.1021/acs.chemrev.0c00752
27. Dhawan A, Pandey A, Sharma V. Toxicity Assessment of Engineered Nanomaterials: Resolving the Challenges. Journal of Biomedical Nanotechnology. 2011; 7(1): 6-7. doi: 10.1166/jbn.2011.1173
28. Jiang L, Wu Z, Xu X, et al. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies. Journal of International Medical Research. 2021; 49(3). doi: 10.1177/03000605211000157
29. Sang L, Wang Y, Zong C, et al. Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO2 and Heavy Metals: QSAR Model Apply Random Forest Algorithm after Clustering Analysis. Molecules. 2022; 27(18): 6125. doi: 10.3390/molecules27186125
30. Li Z, Liu F, Yang W, et al. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems. 2022; 33(12): 6999-7019. doi: 10.1109/tnnls.2021.3084827
31. Papadiamantis AG, Jänes J, Voyiatzis E, et al. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform. Nanomaterials. 2020; 10(10): 2017. doi: 10.3390/nano10102017
32. Volovat S, Negru S, Stolniceanu C, et al. Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Experimental and Therapeutic Medicine. 2021; 21(5). doi: 10.3892/etm.2021.9967
33. Serrano DR, Luciano FC, Anaya BJ, et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics. 2024; 16(10): 1328. doi: 10.3390/pharmaceutics16101328
34. J. Witten et al., "Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy, " Nature biotechnology, pp. 1-10, 2024.
35. Cheng L, Zhu Y, Ma J, et al. Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection. ACS Nano. 2024; 18(42): 28735-28747. doi: 10.1021/acsnano.4c07615
36. Wang H. Prediction of protein–ligand binding affinity via deep learning models. Briefings in Bioinformatics. 2024; 25(2). doi: 10.1093/bib/bbae081
37. Liyanage PY, Hettiarachchi SD, Zhou Y, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2019; 1871(2): 419-433. doi: 10.1016/j.bbcan.2019.04.006
38. Duan C, Yu M, Xu J, et al. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomedicine & Pharmacotherapy. 2023; 162: 114643. doi: 10.1016/j.biopha.2023.114643
39. Liu HL, Hua MY, Chen PY, et al. Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment. Radiology. 2010; 255(2): 415-425. doi: 10.1148/radiol.10090699
40. Goktas P, Grzybowski A. Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI. Journal of Clinical Medicine. 2025; 14(5): 1605. doi: 10.3390/jcm14051605
41. Kurul F, Turkmen H, Cetin AE, et al. Nanomedicine: How nanomaterials are transforming drug delivery, bio-imaging, and diagnosis. Next Nanotechnology. 2025; 7: 100129. doi: 10.1016/j.nxnano.2024.100129
42. Radanliev P. AI Ethics: Integrating Transparency, Fairness, and Privacy in AI Development. Applied Artificial Intelligence. 2025; 39(1). doi: 10.1080/08839514.2025.2463722
43. Lin PC, Lin S, Wang PC, et al. Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances. 2014; 32(4): 711-726. doi: 10.1016/j.biotechadv.2013.11.006
44. Firoozi AA, Firoozi AA, Maghami MR. Transformative Impacts of Nanotechnology on Sustainable Construction: A Comprehensive Review. Results in Engineering. 2025; 26: 104973. doi: 10.1016/j.rineng.2025.104973
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP