Public-Private Partnerships (PPPs) can be an effective way of delivering infrastructure. However, achieving value for money can be difficult if government agencies are not equipped to manage them effectively. Experience from OECD countries shows that the availability of finance is not the main obstacle in delivering infrastructure. Governance—effective decision-making—is the most influential aspect on the quality of an investment, including PPP investments. In 2012, the OECD together with its member countries developed principles to ensure that PPPs deliver value for money transparently and prudently, supported by the right institutional capacities and processes to harness the upside of PPPs without jeopardizing fiscal sustainability. Survey results from OECD countries show that some dimensions of the recommended practices are well applied and past and ongoing reforms show progress. However, other principles have not been well implemented, reflecting the continuing need for improving public governance of PPPs across countries.
Research into electro-conductive textiles based on conductive polymers like polypyrrole has increased in recent years due to their high potential applications in various fields. Conductive polymers behave like insulators in their neutral states, with typical electrical conductivity in the range 10–10 to 10–25 Scm–1. These neutral polymers can be converted into semi-conductive or conductive states with conductivities ranging from 1 Scm–1 to 10–4 Scm–1 through chemical or electro-chemical redox reactions. By applying these polymers to a textile surface, we can obtain novel composites that are strong, flexible, lightweight, and highly electroconductive. These textile composites are suitable for applications such as heating pads, sensors, corrosion-protecting materials, actuators, electrochromic devices, EMI shielding, etc. The methods of application of conductive polymers onto the textile surface, such as in-situ chemical, in-situ electrochemical, in-situ vapor phase, in-situ polymerization in a supercritical fluid, and solution coating processes, are described here briefly. The merits and demerits of these methods are mentioned here. The reaction mechanisms of chemical and electrochemical polymerization proposed by the different researchers are described. Different factors affecting the kinetics of chemical and electrochemical polymerization are accounted for. The influence of textile materials on the kinetics of chemical polymerization is reviewed and reported.
This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
The study examines the impact of various theories on the reflection and transmission phenomena caused by obliquely incident longitudinal and transverse waves at the interface between a continuously elastic solid half-space and a thermoelastic half-space, using multiple thermoelastic models. Numerical calculations reveal that the thermoelastic medium supports one transmitted transverse wave and two transmitted longitudinal waves. The modulus of amplitude proportions is analyzed as a function of the angle of incidence, showing distinct variations across the studied models. Energy ratios, derived from wave amplitudes under consistent surface boundary conditions for copper, are computed and compared across angles of incidence. The results demonstrate that the total energy ratio consistently sums to one, validating energy conservation principles. Graphical comparisons of amplitude proportions and energy ratios for SV and P waves across different models illustrate significant differences in wave behavior, emphasizing the influence of thermoelastic properties on wave transmission and reflection.
Copyright © by EnPress Publisher. All rights reserved.