The research issue at hand pertains to the intricate mechanisms of state regulation that govern the economy of Kazakhstan, particularly in the context of the international sanctions that have been instituted by the nations comprising the Eurasian Economic Union. In order to thoroughly investigate this complex subject matter, this scholarly paper employs a variety of sophisticated methodologies grounded in bibliometric analyses of the most recent 90 academic papers that focus on the various mechanisms of state regulation pertinent to the economic landscape of Kazakhstan. As a subsequent phase in this research endeavor, the modeling of higher-order moments is undertaken with the express aim of delineating the multifaceted ramifications that stem from a singular and isolated perturbation affecting one of the key variables encapsulated within the higher-order moments model. This detailed analytical approach facilitates an in-depth exploration of both the immediate outcomes and the subsequent values of the endogenous variables that are under scrutiny. The innovative aspect of this article’s findings lies in the comprehensive analysis dedicated to the state regulation of Kazakhstan’s economy, which is significantly influenced by the international sanctions that have been imposed by member countries of the Eurasian Economic Union. The outcomes of this research provide a methodical and scientifically rigorous framework for understanding the overarching system of state regulation, which is of paramount importance for cultivating sustainable development within the socio-economic dynamics that characterize the nation of Kazakhstan.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
The purpose of this study is to investigate customer satisfaction with quality of service known as SERVQUAL improvement or service quality competitiveness in emerging markets. Using Indonesian government medical care as an example the author examines the satisfaction of patients. Information and data were collected through a survey of 399 BPJS users in Indonesia. All data were analyzed using Smart PLS. This study demonstrates that there is a negative value associated with the five-dimensional gap. As a result, the care provided to BPJS patients is below par. Specifically, the sensitivity dimension has the largest disparity at 0.15, while the physical evidence dimension has the smallest at 0.49. In order to raise the level of service provided, it may be necessary to take direct measures or examine tangible evidence. This study develops the relationship between different quality service models. There appears to be a substantial increase in the body of literature in the area of service quality, allowing for constant updates and the incorporation of the lessons learned from the experiences of the departed. These revised guidelines are intended to aid SERVQUAL study participants. The study gives practical support to academics and practitioners in directing service quality improvement through the use of data collected from large-scale surveys of patients and medical professionals as doctors in Indonesia.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
The development status of flat panel solar water heater and the composition of water heater are described. The solar radiation in three typical weather conditions of sunny, cloudy and rainy days is studied. The hot water temperature, heat and heat collector efficiency are studied. The results show that the influence of the weather on the solar irradiance is large, and the irradiance has a great influence on the water temperature.
Copyright © by EnPress Publisher. All rights reserved.