This article explores a method for evaluating the achievement of learning effectiveness based on virtual reality technology. The research analyzed the design and construction of a virtual learning environment, data collection of learner behavior, data analysis and evaluation methods, evaluation indicators and personalized feedback, as well as a case study of a virtual learning evaluation system. By using virtual reality technology to create an immersive learning environment, learners can gain an immersive learning experience, and evaluators can accurately record learners' behavior and performance. The learning effectiveness evaluation method based on virtual reality technology can improve learning effectiveness and teaching quality, promote educational innovation and development. These research results are of great significance for the evaluation of virtual learning effectiveness and personalized teaching in the field of education.
Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
The rapidly growing construction industry often deals with complex and dynamic projects that pose significant safety risks. One of the state-owned companies in Indonesia is engaged in large-scale toll road construction projects with a high incidence of workplace accidents. This study aims to improve safety performance in toll road construction by implementing the Scrum framework. The study uses a System Dynamics approach to model interactions between the Scrum framework, project management, and work safety subsystems. Various scenarios were designed by modifying controlled variables and system structures, including introducing a punishment entity. These scenarios were evaluated based on their impact on reducing incidents and the incident rate over the project period. The results indicate that the combined scenario significantly reduces incidents and incident rates in different conditions. The study also finds a strong relationship between Scrum framework implementation and improved safety performance, demonstrating a reduction in incidents and incident rates by over 50% compared to existing conditions. This research underlines the effectiveness of the Scrum framework in enhancing safety in construction projects.
This study aims to assess the efficacy of speech-to-text (STT) technology in improving the writing abilities of special education pupils in Saudi Arabia. A deliberate sample of 150 special education college students was selected, with participants randomly allocated to either an experimental group employing STT technology or a control group using traditional writing methods. The study utilized a comprehensive approach, which included standardized writing assessments, questionnaires, and statistical analyses such as t-tests, correlation, regression, ANOVA, and ANCOVA. The results demonstrate a substantial enhancement in writing skills among the experimental group utilizing Speech-to-Text (STT) technology. The findings contribute to the discussion on assistive technology in special education and offer practical recommendations for educators and policymakers.
In the governance mechanism of how to develop agricultural cooperatives in rural revitalization, incentive mechanisms are the most important part. The village work team mobilizes the supervisory initiative of employees through a good incentive mechanism, combining their goals with the organizational goals, and promoting the development of the team. Based on the theory of herd effect and the motivation mechanism of "Zhizhi Shuangfu", combined with case analysis, this article points out the problems of single incentive form, insufficient attraction of incentive methods, and insufficient skill training for members in the incentive mechanism of YS Agricultural Products Professional Cooperative. In response to these issues, corresponding improvement suggestions were proposed: developing multiple incentive mechanisms, establishing special reward mechanisms, and strengthening technical training for cooperative members.
This study investigates the interaction between audit firms and key audit matters (KAMs) to measure their impact on financial reporting quality in Palestine, thereby enriching the discourse on financial reporting. A descriptive statistical method was used to analyze the audit reports of listed Palestinian firms from 2018 to 2022. A methodology that scrutinizes the clarity and informativeness of KAMs across different audit firms and KAM types, the research investigates how audit procedures and risk assessments contribute to the comprehensibility of KAM disclosures. The findings highlight a significant disparity in the readability of KAMs attributable to audit firm selection, with the non-Big Four firms exhibiting distinct approaches. This understanding, gathered through multivariate analysis, offers valuable contributions to the ongoing discourse on financial reporting quality, emphasizing the essential role of audit firms in shaping the effectiveness of audit reports and KAM disclosures.
Copyright © by EnPress Publisher. All rights reserved.