Introduction: With the adoption of the rural rehabilitation strategy in recent years, China’s rural tourist industry has entered a golden age of growth. Due to the lack of management and decision-support systems, many rural tourist attractions in China experience a “tourist overload” problem during minor holidays or Golden Week, an extended vacation of seven or more consecutive days in mainland China formed by transferring holidays during a specific holiday period. This poses a severe challenge to tourist attractions and relevant management departments. Objective: This study aims to summarize the elements influencing passenger flow by examining the features of rural tourist attractions outside China’s largest cities. Additionally, the study will investigate the variations in the flow of tourists. Method: Grey Model (1,1) is a first-order, single-variable differential equation model used for forecasting trends in data with exponential growth or decline, particularly when dealing with small and incomplete datasets. Four prediction algorithms—the conventional GM(1,1) model, residual time series GM(1,1) model, single-element input BP neural network model, and multi-element input BP network model—were used to anticipate and assess the passenger flow of scenic sites. Result: The multi-input BP neural network model and residual time series GM(1,1) model have significantly higher prediction accuracy than the conventional GM(1,1) model and unit-input BP neural network model. A multi-input BP neural network model and the residual time series GM(1,1) model were used in tandem to develop a short-term passenger flow warning model for rural tourism in China’s outskirts. Conclusion: This model can guide tourists to staggered trips and alleviate the problem of uneven allocation of tourism resources.
Increasing populations in cities have created challenges for the urban environment and also public health. Today, lacking sport participation opportunities in urban settings is a global concern. This study conceptualizes and develops a theoretical framework that identifies factors associated with effective urban built environments that help shape and reshape residents’ attitude toward sport activities and enhances their participation. Based on a comprehensive review of literature and by following the Stimulus-Organism-Response (SOR) theory and attitude change theory, a four-factor measurement model is proposed for studying urban built environment, including Availability, Accessibility, Design, and Safety. Further examinations are made on how these factors are channeled to transform residents’ attitudes and behavior associated with participating in sport activities, with Affordability as a moderator. Discussions are centered around the viability of the developed framework and its application for future research investigations.
This study aims to guide future research by examining trends and structures in scholarly publications about digital transformation in healthcare. We analyzed English-language, open-access journal articles related to this topic from the Scopus database, irrespective of publication year. Using tools like Microsoft Excel, VOSviewer, and Scopus Analyzer, we found a growing research interest in this area. The most influential article, despite being recent, has been cited 836 times, indicating its impact. Notably, both Western and Eastern countries contribute significantly to this field, with research spanning multiple disciplines, including computer science, medicine, engineering, business, social sciences, and health professions. Our findings can help policymakers allocate resources to impactful research areas, prioritize multidisciplinary collaboration, and promote international partnerships. They also offer insights for technology investment, implementation, and policy decisions. However, this study has limitations. It relied solely on Scopus data and didn’t consider factors like author affiliations. Future research should explore specific collaboration types and the ethical, social, policy, and governance implications of digital transformation in healthcare.
This quasi-experimental study examined the effect of a mechanics course delivered through a Learning Management System (LMS) on the creativity of prospective physics teachers at a teacher training college in Mataram, Indonesia. The study was conducted in the post-pandemic era. Using a pretest-posttest one-group design, the researchers evaluated changes in creativity across three domains: figural, numeric, and verbal. The results showed significant improvements in overall creativity, with the most critical gains observed in the figural domain. Further analysis revealed that fluency was the creative indicator with the most enhancement. In contrast, other indicators displayed varying degrees of improvement. These findings highlight the potential of LMS-based instruction in fostering creativity among future physics educators, particularly in the figural, numeric, and verbal domains. This study adds to the growing body of evidence supporting technology integration into teacher education, especially during times of crisis. Future research should explore more targeted instructional strategies within LMS environments and utilize comprehensive creativity assessment methods further to enhance creative learning experiences for prospective physics teachers.
Copyright © by EnPress Publisher. All rights reserved.