Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
With the development of material life, the importance of plants in life has become increasingly prominent, and indoor flowers are also popular. As we all know, plants have purified air, refreshing brainwashing, promote sleep, sterilization and other effects, such as mint, Clivia, aloe and so on. Therefore, the choice of plants corresponding to their own needs is particularly important, while to note that some flowers should not be placed indoors. And different flowers on the water, temperature, light, soil and other requirements are not the same.
Distributed Energy Resources (DERs), such as solar photovoltaic (PV) systems, wind turbines, and energy storage systems, offer many benefits, including increased energy efficiency, sustainability, and grid reliability. However, their integration into the smart grid also introduces new vulnerabilities to cyber threats. The smart grid is becoming more digitalized, with advanced technologies like Internet of Things (IoT) devices, communication networks, and automation systems that enable the integration of DER systems. While this enhances grid efficiency and control, it creates more entry points for attackers and thus expands the attack surface for potential cyber threats. Protecting DERs from cyberattacks is crucial to maintaining the overall reliability, security, and privacy of the smart grid. The adopted cybersecurity strategies should not only address current threats but also anticipate future dangers. This requires ongoing risk assessments, staying updated on emerging threats, and being prepared to adapt cybersecurity measures accordingly. This paper highlights some critical points regarding the importance of cybersecurity for Distributed Energy Resources (DERs) and the evolving landscape of the smart grid. This research study shows that there is need for a proactive and adaptable cybersecurity approach that encompasses prevention, detection, response, and recovery to safeguard these critical energy systems against cyber threats, both today and in the future. This work serves as a valuable tool in enhancing the cybersecurity posture of utilities and grid-connected DER owners and operators. It allows them to make informed decisions, protect critical infrastructure, and ensure the reliability and security of grid-connected DER systems in an evolving energy landscape.
Cellulose nanocrystal, known as CNCs, is a form of material that can be produced by synthesizing carbon from naturally occurring substances, such as plants. Due to the unique properties it possesses, including a large surface area, impressive mechanical strength, and the ability to biodegrade, it draws significant attention from researchers nowadays. Several methods are available to prepare CNC, such as acid hydrolysis, enzymatic hydrolysis, and mechanical procedures. The characteristics of CNC include X-ray diffraction, transmission electron microscopy, dynamic light scattering, etc. In this article, the recent development of CNC preparation and its characterizations are thoroughly discussed. Significant breakthroughs are listed accordingly. Furthermore, a variety of CNC applications, such as paper and packaging, biological applications, energy storage, etc., are illustrated. This study demonstrates the insights gained from using CNC as a potential environmentally friendly material with remarkable properties.
In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
Hybrid nanofluids have several potential applications in various industries, including electronics cooling, automotive cooling systems, aerospace engineering, and biomedical applications. The primary goal of the study is to provide more information about the characteristics of a steady and incompressible stream of a hybrid nanofluid flowing over a thin, inclined needle. This fluid consists of two types of nanoparticles: non-magnetic nanoparticles (aluminium oxide) and magnetic nanoparticles (ferrous oxide). The base fluid for this nanofluid is a mixture of water and ethylene glycol in a 50:50 ratio. The effects of inclined magnetic fields and joule heating on the hybrid nanofluid flow are considered. The Runge-Kutta fourth-order method is used to numerically solve the partial differential equations and governing equations, which are then converted into ordinary differential equations using similarity transformations. Natural convection refers to the fluid flow that arises due to buoyancy forces caused by temperature differences in a fluid. In the context of an inclined needle, the shape and orientation of the needle have significantly affected the flow patterns and heat transfer characteristics of the nanofluid. These analyses protest that raising the magnetic parameter results in an increase in the hybrid nanofluid thermal profile under slip circumstances. Utilizing the potential of hybrid nanofluids in a variety of technical applications, such as energy systems, biomedicine, and thermal management, requires an understanding of and ability to manipulate these effects.
Copyright © by EnPress Publisher. All rights reserved.