The concept of sustainable urban mobility has gained increasing attention in recent years due to the challenges posed by rapid urbanization and environmental degradation. The objective of this study is to explore the role of on-demand transportation in promoting sustainable urban mobility, incorporating insights from customer interests and demands through survey analysis. To fulfill this objective, a mixed-methods approach was employed, combining a systematic literature review with survey analysis of customer interests and demands regarding on-demand transportation services. This study combines a systematic literature review and a targeted survey to provide a comprehensive analysis of sustainable urban mobility, addressing gaps in understanding customer preferences alongside technological and financial considerations. The literature review encompassed various aspects including technological advancements, regulatory frameworks, user preferences, and environmental impacts. The survey analysis involved collecting data on customer preferences, satisfaction levels, and suggestions for improving on-demand transportation services. The findings of the study revealed significant insights into customer interests and demands regarding on-demand transportation services. Analysis of survey data indicated that factors such as convenience, affordability, reliability, and environmental sustainability were key considerations for customers when choosing on-demand transportation options. Additionally, the survey identified specific areas for improvement, including service coverage, accessibility, and integration with existing transportation networks. By providing flexible, efficient, and environmentally friendly transportation options, on-demand services have the potential to reduce congestions, improve air quality, and enhance overall urban livability.
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Climate change has adverse effects on ecosystems and several socio-economic sectors including health. Indeed, infrastructure, continuity of medical services, and the hospital environment are all directly affected by the effects of climate-related risks. This study aims to describe the observations of the effects of climate change risks on health systems in the Greater Lomé health region of Togo. We used an interview guide and a questionnaire to collect information. The observations allowed us to assess the effects caused by climate risks. According to the results, 84.62% of respondents attest that health centers experience flooding during rainy periods and damage caused by strong winds is noticeable among 76.92% of respondents. More than 25.40% and 61.86% respectively of respondents mention that droughts and floods have effects on health systems. The results of this study will allow health system managers to become aware of how to plan useful actions to facilitate the management of climate-related risks in health facilities in the Greater Lomé health region. In view of all these results, it is necessary that measures be taken to strengthen the resilience of health systems through awareness campaigns and training of actors throughout the health pyramid.
The sustainable development of Madeira Island necessitates the implementation of more precise and targeted planning strategies to address its regional challenges. Given the urgency of this issue within the context of sustainability, planning approaches must be grounded in and reinforced by a comprehensive array of thematic studies to fully grasp the complexities involved. This research leverages Geographic Information Systems (GIS) to analyze land use and occupancy patterns and their evolution within the municipality of Machico on Madeira Island. The study provides a nuanced perspective on the urban structure’s stagnation in the region, while concurrently highlighting the dynamic shifts in agricultural practices. Furthermore, it elucidates the transformation of predominant native vegetation within the municipality from 1990 to 2018. Notably, the research underscores the alarming decline in native vegetation due to anthropogenic activities, emphasizing the need for more rigorous monitoring by regional authorities to safeguard and preserve these valuable landscapes, habitats, and ecosystems.
Copyright © by EnPress Publisher. All rights reserved.