Using individual- and panel country-level data from 118 countries for the period 1981–2020, this study investigates the effects of national- and individual-level economic and environmental factors on subjective well-being (SWB). Two individual SWB indicators are selected: the feeling of happiness and life satisfaction. Additionally, two environmental factors are also considered: CO2 emissions by country level and personal perspective on environmental protection. The ordered probit estimation results show that CO2 emissions have a significant negative effect on SWB, and a higher perspective on environmental protection has a significant and positive effect. Compared with the average marginal effect of national income, CO2 emissions are a more important determinant of SWB when considering a personal perspective on protecting the environment. The estimation results are robust to various estimation model specifications: inclusion of additional air pollutants (CH4 and N2O), PM 2.5 and various sample groupings. This study makes a novel contribution by providing comprehensive insights into how both individual environmental attitudes and national pollution levels jointly influence subjective well-being.
This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
The prospects of digital infrastructure in promoting rural economic growth and development are by and large immense. The paper found that rural development is considerably important for economic development and for achievement of sustainable livelihoods that increases people’s ability to achieve good health and wellbeing that enable the achievement of sustainable development. The paper found that digital imbalance and digital illiteracy in the rural areas hinder implementation of digital infrastructure to lead to rural economic growth. Digital infrastructure is the source of economic opportunities that enables local people in the rural areas to be more creative in achieving development success. It enables them to have a unique sense of place and fashioning of vibrant economic and financial opportunities that ensure the achievement of sustainable rural economic development. However, the paper found that the application of digital infrastructure to South Africa’s rural areas in the bid to promote rural economic growth has been hindered by factors like the digital divide, financial constraints, digital illiteracy and the failure to own a smart phone. These factors hinder digital infrastructure from leading to sustainable rural economic development and growth. The paper used secondary data gathered from existing literature. The use of qualitative research methodology and document and content analysis techniques became vital in the process of collecting and analyzing collected data.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Copyright © by EnPress Publisher. All rights reserved.