This study investigated the changing land use patterns and their impacts on ecosystem in the Teesta River Basin of northwestern Bangladesh. Although anthropocentric land use patterns, including agricultural land use, settlements, built areas, and waterbody loss, have been increasing in the Nilphamari district, by negatively affecting local ecosystems, they have not been identified by prior research. Limitations of contemporary literature motivated me to work on this crucial ground in the Teesta River Basin in Northwestern Bangladesh. This study applied a mixed research approach to identify the study objectives. Firstly, the land use and land cover (LULC) changes which occurred between 2000 and 2020 were detected using satellite imagery and supervised classification method. In addition to the detection of LULC changes, the study explored the people’s perceptions and experiences about the ecosystem changes resulted from the LULC changes over the last 20 years, conducting stakeholders’ consultations and household surveys utilizing a semi-structured questionnaire. The findings indicated that waterbodies in Nilphamari district have significantly decreased from 378 km2 in 2000 to 181 km2 in 2020. In the same way, the vegetation coverage has reduced 187 km2 between the years 2000 and 2020. On the contrary, agricultural lands (croplands) have increased from 595 km2 to 905 km2 and settlements have increased from 81 km2 to 206 km2 between the years 2000 and 2020. From the chi-square test, it was found a significant association between ecosystem change and biodiversity loss. It was further identified that waterbody decreases have significant impacts on aquatic ecosystems. The results of this study also indicated that due to the introduction of foreign tree species, local and native species have been significantly decreasing over the time. This study emphasizes the non-anthropocentric and inclusive land use policy implications for protecting life on land and preserving the aquatic ecosystem in Bangladesh.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
This study employed the theory of planned behavior to examine how green urban spaces influence walking behaviors, with a focus on Chongqing’s Jiefangbei Pedestrian Street. Using structural equation modelling to analyse survey data from 401 respondents, this study assessed the relationships between attitudes, subjective norms, perceived behavioral control, walking intentions, and actions. The results revealed that attitudes toward walking (β = 0.335, p < 0.001) and subjective norms (β = 0.221, p < 0.001) significantly predict walking intentions, which strongly determine actual walking behavior (β = 0.379, p < 0.001). Moreover, perceived behavioral control exerts a direct significant impact on walking actions (β = 0.332, p < 0.001), illustrating that both environmental and social factors are crucial in promoting pedestrian activity. These findings suggest that enhancing the appeal and accessibility of urban green spaces can significantly encourage walking, providing valuable insights for urban planning and public health policy. This study can guide city planners and health professionals in creating more walkable and health-conducive urban environments.
Copyright © by EnPress Publisher. All rights reserved.