With the advent of the big data era, the amount of various types of data is growing exponentially. Technologies such as big data, cloud computing, and artificial intelligence have achieved unprecedented development speed, and countries, regions, and multiple fields have included big data technology in their key development strategies. Big data technology has been widely applied in various aspects of society and has achieved significant results. Using data to speak, analyze, manage, make decisions, and innovate has become the development direction of various fields in society. Taxation is the main form of China’s fiscal revenue, playing an important role in improving the national economic structure and regulating income distribution, and is the fundamental guarantee for promoting social development. Re examining the tax administration of tax authorities in the context of big data can achieve efficient and reasonable application of big data technology in tax administration, and better serve tax administration. Big data technology has the characteristics of scale, diversity, and speed. The effect of tax big data on tax collection and management is becoming increasingly prominent, gradually forming a new tax collection and management system driven by tax big data. The key research content of this article is how to organically combine big data technology with tax management, how to fully leverage the advantages of big data, and how to solve the problems of insufficient application of big data technology, lack of data security guarantee, and shortage of big data application talents in tax authorities when applying big data to tax management.
Regions rich in natural resources often exhibit a high dependency on revenue from Revenue Sharing Funds (DBH). This dependency can pose long-term challenges, especially when commodity prices experience significant fluctuations. This study examines the role of Revenue Sharing Funds from Natural Resources (DBH SDA) on economic growth in 491 regencies/cities in Indonesia during the 2010–2012 period. The analysis employs panel data regression. The selection of this period was based on the occurrence of a resource boom characterized by a surge in global demand for natural resource commodities, accompanied by an increase in commodity prices. This condition positively impacted the revenues of both the nation and resource-rich regions. The results of the study show that economic growth is not influenced by DBH SDA but rather by General Allocation Funds (DAU). This indicates that the central government still plays a significant role in determining economic growth at the regency/city level in Indonesia. Regions need to prioritize economic diversification to reduce reliance on DBH SDA and DAU. Investment in productive sectors, such as infrastructure, education, and technology, can be a strategic approach to accelerating regional economic growth.
Developing “New Quality Productive Forces” (NQPFs) has been accepted as a new theory to accelerate the high-quality development in China. In current, China’s high-quality development mainly relies on the traction of the digital economy. In view of this, developing NQPFs in China’s digital economy sector requires locate and remove some obstacles, such as the insufficient utilization of data, inadequate algorithm regulation, the mismatched supply and demand of regional computing power and the immature market environment. As a solution, it is necessary to allocating data property rights in a market-oriented way, establishing a user-centered algorithm governance system, accelerating the establishment of the national integrated computing network, and maintaining fair competition to optimize the market environment.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
The explosion of information technology, besides its positive aspects, has raised many issues related to personal information and personal data in the network environment. Because children are vulnerable to abuse, fraud and exploitation, protecting children’s personal information and personal data is always of concern to many countries. From the concept and characteristics of personal information and personal data of children in Europe, the United States and Vietnam, it can be seen that children’s personal information and personal data protection is very necessary in every country today. This research focuses on the age considered a child, the child’s consent and his or her parental consent when providing and processing personal information or personal data of children under the laws of the EU, US and Vietnam. Therefore, the article proposes some recommendations related to the child’s consent and his or her parental consent in protecting children’s personal data in Vietnam.
Central Sulawesi has been grappling with significant challenges in human development, as indicated by its Human Development Index (HDI). Despite recent improvements, the region still lags behind the national average. Key issues such as high poverty rates and malnutrition among children, particularly underweight prevalence, pose substantial barriers to enhancing the HDI. This study aims to analyze the impact of poverty, malnutrition, and household per capita income on the HDI in Central Sulawesi. By employing panel data regression analysis over the period from 2018 to 2022, the research seeks to identify significant determinants that influence HDI and provide evidence-based recommendations for policy interventions. Utilizing panel data regression analysis with a Fixed Effect Model (FEM), the study reveals that while poverty negatively influences with HDI, underweight prevalence is not statistically significant. In contrast, household per capita income significantly impacts HDI, with lower income levels leading to declines in HDI. The findings emphasize the need for comprehensive policy interventions in nutrition, healthcare, and economic support to enhance human development in the region. These interventions are crucial for addressing the root causes of underweight prevalence and poverty, ultimately leading to improved HDI and overall well-being. The originality of this research lies in its focus on a specific region of Indonesia, providing localized insights and recommendations that are critical for targeted policy making.
Copyright © by EnPress Publisher. All rights reserved.