Abrantes, P. (2016). Big Data Applied to tax Evasion Detection: A Systematic Review. 2016 International Conference on Computational Science and Computational Intelligence (CSCI). NEW YORK: IEEE, 12, 435-440.
Bart, B. (2016). Big Data Analytics Application Scenarios and Practical Essence of Data Science, Beijing: People’s Posts and Telecommunications Press.
Bourquard, J., and Kirsch, C. (2014). Big Data = Big Benefits. States are using large amounts of data to improve efficiency, fight fraud and identify savings. State legislatures, 8(40), 32-34.
Castellon, G., Pamela, V., Juan, D. (2013). Characterization and detection of taxpayers with false invoices using data mining techniques. Expert Systems with Applications,40(5),1427-1436.https://doi:10.1016/j.eswa.2012.08.051.
Chen, Z. L., Chen, S. Q., and Chen, A. M. (2018). Research on Tax Big Data Flow.Tax Economics Research,(03), 40-47. https://doi:10.16340/j.cnki.ssjjyj.2018.03.006.
Dong, L., and Wang, X. D. (2017). Research on the Innovation of Tax Collection and Management Model of “Number Management System”. Tax Research, (03), 110-114. https://doi:10.19376/j.cnki.cn11-1011/f.2017.03.024
Federico, C., and Thompson, T. (2019). Do IRS Computers Dream About Tax Cheats? Artificial Intelligence and Big Data in Tax Enforcement and Compliance. Journal of Tax Practice & Procedure, 21(1), 35-39.
Feng, S. W., Jiang, F., Yang, Z. (2022). Reflection and exploration on achieving precise tax supervision under big data thinking.Tax Research, (11), 83-88. https://doi:10.19376/j.cnki.cn11-1011/f.2022.11.005
Gerard, T. (2017). Transition, Taxation and the State. Taylor and Francis. https://doi:10.4324/9781351144247
Jiang, Z. (2022). The Application of Tax Big Data in Tax Governance. China Taxation (08), 10-12. https://doi:10.19376/j.cnki.cn11-1178/f.2022.08.016
Lavalle, S., and Lesser, E. (2011). Big Data Analytic sand the pathfromin sight stovalue. MITSloan Management Review, 52, 21-22.
Li, J. Y. (2016). Protecting the tax base in a digital economy in Trepelkov, Tonino and Halka, eds., United Nations Handbook on Selected Issues in Protecting the Tax Base of Developing Countries. New York: United Nations,1-49.
Lipniewicz, R. (2017). Tax administration and risk management in the digital age. Information Systems in Management, 6(1), 26-37.
Manuel, C., and Juan, M. H. (2021). Anevolutionary game model for understanding fraud in consumption taxes researchfrontier. IEEE Computational Intelligence Magazine, 16(2), 62–76.
Miloš, S., Jasna, A., Dušan, J., Nataša, K. (2021). Tax evasion risk management using a Hybrid Unsupervised Outlier Detection method. Expert Systems with Applications,193. https://doi:10.1016/J.ESWA.2021.116409.
Misran, S. M., Nurmandi, A., Khadafi, R. (2022). A Meta-Analysis of Big Data Security: Using Blockchain for One Data Governance. Case Study of Local Tax Big Data in Indonesia. (eds.).https://doi:10.2991/AEBMR.K.220209.026.
OECD. (2020). Tax Administration 3.0: The Digital Transformation of Tax Administration. Paris: OECD, 3.
Schwanke, A. (2017). Technology helping to tackle tax fraud across sharing economy. International Tax Review,1.
Silva, L. S. D., Carvalho, R. N., Souza, J. C. F. (2015). Predictive Models on Tax Refund Claims-Essays of Data Mining in Brazilian Tax Administration.
Tang, Y., Wang, C., Xue, J. Q., Zhu, L., Wei, J. B., Ni, W. (2016). The impact of big data on modern tax management in the context of “Internet plus”.Tax Research,(10), 108-112.https://doi:10.19376/j.cnki.cn11-1011/f.2016.10.024
Wang, L. N. (2021). The opportunities and challenges of digital transformation of tax collection and management in the digital economy. International Taxation, (12), 65-70. https://doi:10.19376/j.cnki.cn10-1142/f.2021.12.010
Washington, A. L. (2014). Government Information Policy in the Era of Big Data. Review of Policy Research, 31(4), 319-325. https://doi:10.1111/ropr.12081
Wu, R. S., Ou, C. S., Lin, H., et al. (2012). Using data mining technique to enhance tax evasion detection performance. Expert Systems with Applications, 10.