The global agreement on environmentally friendly policies puts pressure on businesses to implement good practices to increase legitimacy in a competitive environment. This research aims to examine business dynamic capabilities and value creation processes through the concept of green dynamic marketing capabilities. This concept addresses the ability of businesses to absorb, manage information and accumulate new knowledge that fuels innovative endeavors. The dynamic capability view and customer value theory are integrated to theoretically explain the value creation process of market-orientated innovative products. A total of 58 global companies in Clean200 were sampled. A quantitative approach was conducted to measure the effect of organizational learning (environment management team, environment management training, environment supply chain management) on green innovation (environmental innovation score, eco design product). The results showed that the contribution of Model-1 (0.473 or 47.3%) explained the effect of organizational learning on environmental innovation score, respectively on the variables of environment management team (2.859/0.005), environment management training (−2.971/0.003), and environment supply chain management (7.786/0.000). The contribution of Model-2 (0.448/44.8%) explains the effect of organizational learning on eco-design product, respectively on the variables of environment management team (4.280/0.000), environment management training (−6.401/0.000), and environment supply chain management (7.910/0.000). Model-3 tested the structural association variables in organizational learning and green innovation. A significant influence can be seen with a probability value smaller than 0.05. This research shows that the concept of green dynamic marketing capabilities can be used to explain the ability of businesses in response to the pressure of green global norms through the development of organizational learning towards creation of green innovation product that has impact on market performance. The implication of this research is the creation of new mindset in which green global norms challenge becomes an opportunity for businesses to improve competitiveness.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
Recovery and resilience plan (RRP) approved by the European Commission fosters the development of lifelong learning programs to upgrade employees’ skills and knowledge for digital and green transitions. Within higher education, the field of information and communication technology (ICT) is also a priority area, so we compared the demographic variables of students enrolled in formal first-cycle higher education programs in ICT with those enrolled in lifelong ICT programs within the framework of the Advanced Computer Skills project funded by the RRP in Slovenia. The results show that formal first-cycle higher education in the field of ICT remains strongly male-dominated, whereas, among participants in lifelong learning, the percentage of females stands out. Bachelor programs in ICT are primarily enrolled by young people aged up to 24 years, while shorter university-based lifelong learning programs attract mostly older participants with higher completed formal education and from a broader range of prior educational backgrounds. Finally, when all three variables (gender, age and level of prior formal education) are considered, participants in lifelong learning are much more similar to part-time students than full-time bachelor ICT students, although the percentage of men in formal education is still predominant even in part-time studies. The research findings highlight the need for further efforts to offer lifelong learning in ICT to enable individuals to improve their employment prospects, progress in the workplace or even change their field of work.
The COVID-19 pandemic has fundamentally transformed the global education landscape, compelling institutions to adopt e-learning as an essential tool to sustain academic activities. This research examines the critical impact of e-learning on arts and science college students in Coimbatore, with an emphasis on its influence on their readiness for campus recruitment. Using a survey of 300 students, this study investigates their perceptions of online education, highlighting both its advantages, such as flexibility and accessibility, and its challenges, including engagement barriers and technical limitations. Data was collected through structured questionnaires and analyzed using statistical methods to draw meaningful insights. The research also explores the efficacy of online assessments in recruitment processes and assesses students’ awareness of available e-learning platforms and courses. The urgency of this study lies in addressing the pressing need to optimize digital education models as institutions globally transition toward blended learning post-pandemic. The findings underline the dual potential and limitations of e-learning, concluding with actionable recommendations to enhance its effectiveness, particularly in preparing students for competitive employment opportunities.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
Copyright © by EnPress Publisher. All rights reserved.