Exposure to high-frequency (HF) electromagnetic fields (EMF) has various effects on living tissues involved in biodiversity. Interactions between fields and exposed tissues are correlated with the characteristics of the exposure, tissue behavior, and field intensity and frequency. These interactions can produce mainly adverse thermal and possibly non-thermal effects. In fact, the most expected type of outcome is a thermal biological effect (BE), where tissues are materially heated by the dissipated electromagnetic energy due to HF-EMF exposure. In case of exposure at a disproportionate intensity and duration, HF-EMF can induce a potentially harmful non-thermal BE on living tissues contained within biodiversity. This paper aims to analyze the thermal BE on biodiversity living tissues and the associated EMF and bio-heat (BH) governing equations.
Background: Multiple sclerosis is often a longitudinal disease continuum with an initial relapsing-remitting phase (RRMS) and later secondary progression (SPMS). Most currently approved therapies are not sufficiently effective in SPMS. Early detection of SPMS conversion is therefore critical for therapy selection. Important decision-making tools may include testing of partial cognitive performance and magnetic resonance imaging (MRI). Aim of the work: To demonstrate the importance of cognitive testing and MRI for the prediction and detection of SPMS conversion. Elaboration of strategies for follow-up and therapy management in practice, especially in outpatient care. Material and methods: Review based on an unsystematic literature search. Results: Standardized cognitive testing can be helpful for early SPMS diagnosis and facilitate progression assessment. Annual use of sensitive screening tests such as Symbol Digit Modalities Test (SDMT) and Brief Visual Memory Test-Revised (BVMT-R) or the Brief International Cognitive Assessment for MS (BICAMS) test battery is recommended. Persistent inflammatory activity on MRI in the first three years of disease and the presence of cortical lesions are predictive of SPMS conversion. Standardized MRI monitoring for features of progressive MS can support clinically and neurocognitively based suspicion of SPMS. Discussion: Interdisciplinary care of MS patients by clinically skilled neurologists, supported by neuropsychological testing and MRI, has a high value for SPMS prediction and diagnosis. The latter allows early conversion to appropriate therapies, as SPMS requires different interventions than RRMS. After drug switching, clinical, neuropsychological, and imaging vigilance allows stringent monitoring for neuroinflammatory and degenerative activity as well as treatment complications.
This study was conducted to study the growth process of silkworm eggs in a silkworm research center under the condition of no electromagnetic radiation and strong electromagnetic radiation. In the course of the study, the silkworm seeds were randomly divided into two groups. All the mulberry leaves were used to observe and record the time of molting dormancy growth and the related physiological parameters were recorded and recorded. The effect of mobile phone radiation on the growth process of silkworm larvae was analyzed. Based on the experimental results, the microcosmic mechanism of the effects of mobile radiation on organisms and adolescents was analyzed and the preventive measures were put forward. First, for young people as much as possible to reduce the frequency of mobile phone use, thereby reducing the adverse effects of electromagnetic radiation on the growth and development of young people, to develop good habits. Second, the social and electromagnetic wave management departments attach importance to strengthen the rational use of electromagnetic waves.
The temporomandibular joint (TMJ) is considered a bicondylar diarthrosis type joint. Imaging evaluation is a fundamental part of its assessment, which should include both bony and soft tissue characteristics and the relationship between them. Magnetic resonance imaging (MRI) represents the gold standard for the study of soft tissues; however, up to now, its main application continues to be the visualization of the articular disc. For this reason, the present article aimed to point out the information available in the literature regarding the visualization of the joint capsule in MRI and to evaluate it as an independent structure.
Colorectal cancer is the fourth leading cause of death worldwide and the fifth leading cause of cancer death in Colombia. Magnetic resonance imaging is the ideal modality for the evaluation of colorectal cancer, since it allows staging by determining invasion beyond the muscularis propria, extension towards adjacent organs, identification of patients who are candidates for chemotherapy or pre-surgical radiotherapy and planning of the surgical procedure. The key point is based on the differentiation between T2 and T3 stages through the use of sequences with high-resolution T2 information. In addition to this, it allows the assessment of the size and morphology of the lymph nodes, and considerably increases the specificity for the detection of lymph node involvement. MRI is a technique with high specificity and high reproducibility.
Gout is an arthritis characterized by the deposition of sodium monoacid crystals in the synovial membrane, articular cartilage, and periarticular tissues that leads to an inflamatory process. In most cases, the diagnosis is established by clinical criteria and analysis of the synovial fluid for MSU crystals. However, gout may manifest in atypical ways and make diagnosis difficult. In these situations, imaging studies play a fundamental role in helping to confirm the diagnosis or even exclude other differential diagnoses. Conventional radiography is still the most commonly used method in the follow-up of these patients, but it is a very insensitive test, because it only detects late changes. In recent years, advances in imaging methods have emerged in relation to gout. Ultrasound has proven to be a highly accurate test in the diagnosis of gout, identifying MSU deposits in articular cartilage and periarticular tissues, and detecting and characterizing tophi, tendinopathies, and tophi enthesopathies. Computed tomography is an excellent exam for the detection of bone erosions and evaluation of spinal involvement. Dual-energy computed tomography, a new method that provides information on the chemical composition of tissues, allows identification of MSU deposits with high accuracy. MRI can be useful in the evaluation of deep tissues not accessible by ultrasound. In addition to diagnosis, with the emergence of drugs that aim to reduce the tophaceous burden, imaging examinations become a useful tool in the follow-up treatment of gout patients.
Copyright © by EnPress Publisher. All rights reserved.