With the progress of information technology, especially the widespread use of artificial intelligence technology, it has shown an important role in promoting economic and social development. Art and design in universities is a new discipline that combines modern technology with humanities and art. Only by emphasizing the development of science and technology, adapting to the requirements of the times, and closely integrating humanities and art with science and technology, can we gradually expand the educational channels for cultivating composite and innovative talents. Effectively organizing different types of scientific research activities, building a sound and comprehensive education system, plays an important role in adjusting teaching relationships, innovating teaching models, enhancing students' professional and comprehensive qualities, and improving their academic performance and employment competitiveness.
This study investigated the students’ perceptions of a self-paced fitness program that is integrated with SitFit, a fitness tracker that measures body inclination during sit-up exercises, and their acceptance of digital innovation in physical education. The data was gathered from a survey of 1001 Thai undergraduates. Results revealed that attitudes toward using the technology and the perceived ease of use were important predictors of behavioral intention to use the sit-up fitness tracker. consistent with previous TAM studies. Subsequently, SitFit was developed based on exercise principles and expert advice to enable users to exercise more effectively while reducing injury risk.
In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
In 2015, the newly built undergraduate colleges have accounted for half of the ordinary undergraduate colleges. Through the investigation, it is concluded that the newly built undergraduate colleges in Sichuan have the following commonalities in the transformation: the school positioning of "application-oriented"; The embodiment of the new university spirit of "serving local construction"; The talent training goal of "innovative and composite applied talents"; Flexible personnel training curriculum system.
Copyright © by EnPress Publisher. All rights reserved.