Through the combination of the geographic information systems (GIS) and the integrated information model, the stability of regional bank slope was comprehensively evaluated. First, a regional bank slope stability evaluation index system was established through studying seven selected factors (slope grade, slope direction, mountain shadow, elevation, stratigraphic lithology, geological structure and river action) that have an impact on the stability of the slope. Then, each factor was rasterized by GIS. According to the integrated information model, the evaluation index distribution map based on rasterized factors was obtained to evaluate the stability of the regional bank slope. Through the analysis of an actual project, it was concluded that the geological structure and stratigraphic lithology have a significant impact on the evaluation results. Most of the research areas were in the relatively low stable areas. The low and the relatively low stable areas accounted for 15.2% and 51.5% of the total study area respectively. The accuracy of slope evaluation results in the study area reached 95.41%.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
The current with the rapid development of Internet and new media technology, the information openness and diversity makes ideological education is facing big challenge, in accordance with the "five a three-ring four law" teaching mode,the fundamental task of implementing ideological and political education, fostering values and cultivating talents is comprehensively carried out. We are advancing the resonance of the “three classrooms” and promoting the synchronous implementation of the “four transformations”, aiming to enhance the “five capacities” of students, according to the current construction of" big education courses "concept, change education thought and idea.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
The objective of this research was to analyze several reading and writing methods used in educational settings, evaluating their pedagogical approaches and their effectiveness in the process of learning to read and write in school-age children. A systematic review was carried out in the open databases Dialnet and ScieELO, using different inclusion and exclusion criteria, which resulted in 164 documents, applying the PRISMA protocol, 20 were selected. A narrative synthesis analysis was carried out on the following dimensions: reading and writing methods, applied strategies, similarities with other methods and impact on the development of literacy. It is concluded that the combined application of the methods of synthetic and analytical approaches to reading and writing paves the way to attend to the diversity of learning styles, facilitates the strengthening of specific linguistic skills, and strengthens reading comprehension and writing competence.
Copyright © by EnPress Publisher. All rights reserved.