In the last several decades, cardiovascular diseases (CVDs) have emerged as a major hazard to human life and health. Conventional formulations for the treatment of CVD are available, but they are far from ideal because of poor water solubility, limited biological activity, non-targeting, and drug resistance. With the advancement of nanotechnology, a novel drug delivery approach for the treatment of CVDs has emerged: nano-drug delivery systems (NDDSs). NDDSs have shown significant advantages in tackling the difficulties listed above. Cytotoxicity is a difficulty with the use of non-destructive DNA sequences. NDDS categories and targeted tactics were outlined, as well as current research advancements in the diagnosis and treatment of CVDs. It’s possible that gene therapy might be included into nano-carriers in the delivery of cardiovascular medications in the future. In addition, the evaluation addressed the drug’s safety.
The national park with Chinese characteristics is the highest level of protection of a kind of natural protection, its establishment marks the park will implement the strictest ecological protection means. It is of great value to construct the utilization system of national park resources under the new natural protected area system in the new era to avoid the misunderstanding of “ecological protection only” and explore how to carry out the sustainable utilization of resources in the reform of national park system and mechanism. According to the analytic hierarchy process (AHP) and Delphi method, the evaluation framework, indicators, reference standards and weights of resource utilization under the national park system were determined in combination with the requirements of constructing the protected natural area system and the total value of resource ecosystem services (including harvest value, existence value and future value). Based on the application research of Bawangling zone of Hainan Tropical Rainforest National Park, the optimal resource utilization system in the future was proposed, and two optimization strategies of ecological adjustment of resource utilization system and construction of suitable resource utilization system were put forward.
While the rapid development of artificial intelligence has affected people's daily lives, it has also brought huge challenges to high school mathematics teaching, such as restructuring the classroom teaching structure, transforming the role of teachers, and selecting classroom teaching methods. Based on this, the article explores the application strategies of AI technology in improving knowledge introduction, improving mathematics classroom efficiency and stimulating students' learning interest, with a view to optimizing classroom teaching links, improving students' core discipline quality, and promoting the development of high school mathematics teaching informatization.
Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Due to the bounded rationality of decision-makers and the substitution effect of non-green products, retailers are not always profitable when selling green products. To assist retailers who may be disadvantaged in the game, this study constructs a two-stage green supply chain game model, considering the bounded rationality of decision-makers and the substitution effect of non-green products, and analyzes the impacts of two operational strategies that retailers can adopt—price-cutting strategy and early replenishment strategy. The research reveals that retailers tend to lower prices in the second stage when price reductions stimulate consumer purchases, enhancing their profitability. However, strategic retailers may raise prices in the first stage to create room for discounts later, potentially harming consumer interests. Contrary to expectations, anticipating future demand does not always improve supply chain profitability in the early replenishment strategy, which mainly depends on the market environment. Early replenishment deprives retailers of negotiation leverage in the second stage, and bulk orders may lead manufacturers to over-invest in green innovation. Therefore, this strategy is effective only when green innovation costs are low, consumer environmental awareness is high, or price sensitivity is low.
In engineering, a design is best described based on its alternative performance operation. In this paper, an electric power plant is analysed based on its effective operational performance even during critical situation or crisis. Data is generated and analysed using both quantitative and qualitative research approach. During maintenance operation of an electric power plant, some components are susceptible to wide range of issues or crises. These includes natural disasters, supply chain disruptions, cyberattacks, and economic downturns. These crises significantly impact power plant operations and its maintenance strategies. Also, the reliable operation of power plants is often challenged by various technical, operational, and environmental issues. In this research, an investigation is conducted on the problems associated with electric power plants by proposing a comprehensive and novel framework to maintenance the power plant during crises. Based on the achieved results discussed, the framework impact and contribution are the integration of proactive maintenance planning, resilient maintenance strategies, advanced technologies, and adaptive measures to ensure the reliability and resilience of electric power plant during power generation operations in the face of unforeseen challenges/crisis. Hypothetical inferences are used ranging from mechanical failures to environmental constraints. The research also presents a structured approach to ensure continuous operation and effective maintenance in the electric power plant, particularly during crisis (such as environmental issues and COVID-19 pandemic issues).
Copyright © by EnPress Publisher. All rights reserved.