The development of critical thinking (CT) enhances academic and professional opportunities. A review of literature reveals the use of fragmented analysis techniques, such as descriptive and correlational methods, among others, which hinder a deeper understanding of CT levels. This research aims to develop a methodology for analyzing Critical Thinking test scores, integrating five phases: exploratory, item analysis, scoring, gap analysis, and correlational. Using a quantitative approach, CT skills were analyzed with the Halpern Critical Thinking Assessment, which includes both open- and closed-ended questions to measure five skills: Verbal Reasoning (VR), Argument Analysis (AA), Hypothesis Testing (HT), Probability Use (PU), and Problem Solving (PS). The sample consisted of 214 students aged 18 and older. The item analysis phase categorized the items into quadrants: satisfactory, for review, or for elimination, based on difficulty and discrimination indices. The gap analysis revealed that Verbal Reasoning and open-ended formats were less satisfactory. The correlational phase, using heat maps, showed a stronger association between Verbal Reasoning and Probability Use. The methodological contributions include a variety of strategies that provide recommended procedures for analyzing tests or questionnaires in general. In today’s digital age, the development of critical thinking is not only a desirable skill but an essential necessity for the higher education system.
This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
The soundscape studied has gained increasingly frequent attention across multiple disciplines, especially in tourism and leisure domain. While it has already indicated a unique soundscape provides dynamic and memorable tourism experiences, a clearly mapped perspective across different segmentations of soundscapes, both natural and acoustically created, remains missing. Therefore, a comprehensive mapping and review of soundscape studies is imperative to understand its implications for potential inbound tourism research in future. This article aimed to explore potential soundscape studies by assessing trends and developments in recent decades (2013–2023). We applied a bibliometric approach, using a PRISMA framework and under NVivo 12 Plus, VOSViewer, and Biblioshiny-R-Studio software as analytical tools. Significant yield discoveries showed that tourism soundscape research is undergoing steady growth, as evidenced by quantity of publications and citation trends. Single and multi-country international collaborations characterized by soundscape outreach research playing an influential role were highlighted. We identified multiple research themes, such as anthropogenic noise and music heritage, and pointed out how we approached this research from two perspectives: environmental/natural and manufacturing/acoustics. In our review, several keywords and predominant themes were identified, which suggested soundscape studies have recently become an increasingly popular topic in tourism research. The broad spectrum of key themes, such a tourism, tourists, sustainability, areas, and development perspectives, are evidence points of significant diversity in these topics. Most importantly, our research offers significant theoretical and conceptual implications for future direction of soundscape studies. We identified three originality main focus domains in soundscape tourism research: urban and natural environments, technological advancements, and tourists’ perceptions and behaviors.
The construction industry is a significant contributor towards global environmental degradation and resource depletion, with developing economies facing unique challenges in adopting sustainable construction practices. This systematic review aims to investigate the gap in sustainable construction implementation among global counterparts. The study utilizes the P5 (People, Planet, Prosperity, Process, Products) Standard as a framework for evaluating sustainable construction project management based on environmental, social, and economic targets. A Systematic Literature Review from a pool of 994 Sustainable Construction Project Management (SCPM) papers is conducted utilizing the PRISMA methodology. Through rigorous Identification, Screening, and Eligibility Verification, an analysis is synthesized from 44 relevant literature discussing SCPM Implementations worldwide. The results highlight significant challenges in three main categories: environmental, social, and economic impacts. Social impacts are found as the most extensively researched, while environmental and economic impacts are less studied. Further analysis reveals that social impacts are a major concern in sustainable construction, with numerous studies addressing labor practices and societal well-being. However, there is a notable gap in research on human rights within the construction industry. Environmental impacts, such as resource utilization, energy consumption, and pollution, are less frequently addressed, indicating a need for more focused studies in these areas. Economic impacts, including local economic impact and business agility, are further substantially underrepresented in the literature, suggesting that economic viability is a critical yet underexplored aspect of sustainable construction. The findings underscore the need for further research in these areas to address the implementation challenges of sustainable project management effectively. This research contributes towards the overall research of global sustainable construction through the utilization of the P5 Standards as a new lens of determining sustainability performance for construction projects worldwide.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Copyright © by EnPress Publisher. All rights reserved.