The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
Nigeria’s palm oil processing industry poses significant environmental pollution risks, jeopardizing the country’s ability to meet the UN’s 17 Sustainable Development Goals (SDGs) by 2030. Traditional processing methods generate palm oil mill effluent (POME), contaminating soil and shallow wells. This study investigated water samples from five locations (Edo, Akwa-Ibom, Cross River, Delta, and Imo states) with high effluent release. While some parameters met international and national standards (WHO guidelines, ASCE, NIS, and NSDWQ) others exceeded acceptable limits, detrimental to improved water quality. Results showed, pH values within acceptable ranges (6.5–8.5), high total conductivity and salinity (800–1150 µS/cm), acceptable hardness values (200–300 mg/L), nitrite concentrations (10–45 mg/L), excessive magnesium absorption (> 50 mg/L), biochemical oxygen demand (BOD) indicating significant pollution (75–290 mg/L), total dissolved solids (TDS) exceeding safe limits in four locations, total solids (TS) exceeding allowable limits for drinking water (310–845 mg/L), water quality index (WQI) values ranged from “poor” to “very poor”. POME contamination by metals like magnesium, nitrite, chloride, and sodium compromised shallow well water quality. Correlation analysis confirmed robust results, indicating strong positive correlations between conductivity and TDS (r = 0.85, p < 0.01) and pH and total hardness (r = 0.65, p < 0.05). The study emphasizes the need for environmentally friendly palm oil processing methods to mitigate pollution, ensure safe drinking water, and achieve Nigeria’s SDGs. Implementation of sustainable practices is crucial to protect public health and the environment.
This study offers a focused examination on Xinfang system, China’s unique mechanism particularly on its ability and efficacy in mediating land disputes between farmers and governmental bodies for social governance purposes. Based on interviews with 10 farmers, the study elucidates the system has low entry barriers and user-friendly, thus fast becoming the preferred system option when dealing with land conflicts. Xinfang facilitates direct communication between farmers and government officials, thereby in line with the sociocultural conventions of the rural populace. The study also highlights several constraints. While the Xinfang system employs a multifaceted approach to conflict resolution, including negotiation and grassroots governmental intervention, it lacks legislative power and institutional authority that are required for effective management of more complex or multi-stakeholder land disputes. The study advocates for a comprehensive reassessment and subsequent reform of the Xinfang system, focusing particularly on its mechanisms and procedures for dispute resolution. Such reforms are not merely instrumental for the more robust safeguarding of farmers’ land rights, but also for enhancing the overall integrity and public trust in China’s legal and administrative frameworks.
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells within the bone marrow. It is the most serious form of plasma cell dyscrasias, whose complications—hypercalcemia, renal failure, anemia, and lytic bone lesions—are severe and justify the therapeutic management. Imaging of bone lesions is a cardinal element in the diagnosis, staging, study of response to therapy, and prognostic evaluation of patients with MM. Historically, the skeletal radiographic workup (SRW), covering the entire axial skeleton, has been used to detect bone lesions. Over time, new imaging techniques that are more powerful than SRW have been evaluated. Low-dose and whole-body computed tomography (CT) supplants SRW for the detection of bone involvement, but is of limited value in assessing therapeutic response. Bone marrow MRI, initially studying the axial pelvic-spinal skeleton and more recently the whole body, is an attractive alternative. Beyond its non-irradiating character, its sensitivity for the detection of marrow damage, its capacity to evaluate the therapeutic response and its prognostic value has been demonstrated. This well-established technique has been incorporated into disease staging systems by many health systems and scientific authorities. Along with positron emission tomography (PET)-18 fluorodeoxyglucose CT, it constitutes the current imaging of choice for MM. This article illustrates the progress of the MRI technique over the past three decades and situates its role in the management of patients with MM.
Copyright © by EnPress Publisher. All rights reserved.