To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
Over the past twenty years, service organizations have adopted total quality management to enhance their service quality, significantly impacting business performance, customer satisfaction, and profitability. This study delves into policy development of sustainable quality management theory, benefits, and various service components, while reviewing its implementation in services industries and policy innovation. The concept of Sustainable Quality Management 4.0 (SQM 4.0) integrates sustainable management, traditional quality management, and Quality 4.0 principles to optimize resources, reduce environmental impacts, and enhance decision-making through Industry 4.0, IoT, AI, and big data analytics. The findings offer valuable framework and policy insights for managers and practitioners on quality management and service systems, providing an implementation framework for Sustainable Quality Management in the service sector. The paper outlines comprehensive elements and strategies for implementation as a SQM framework for attaining sustainable quality management in the services industry.
This study, drawing on the Knowledge-Based View (KBV) and Contingency Theory, explores how analyzer strategic orientation, learning capability, technical innovation, administrative innovation, and SME growth and learning effectiveness are interrelated. Analyzing cross-sectional data from 407 founders, cofounders, and managers of trade and service SMEs in Vietnam’s Southeast Key Economic Region through PLS-SEM, the research demonstrates that analyzer orientation positively impacts both technical and administrative innovation, thereby bolstering SME growth and learning effectiveness. However, learning capability does not significantly impact technical innovation or growth and learning effectiveness. Instead, learning capability negatively affects administrative innovation. Notably, technical and administrative innovations act as mediators between analyzer orientation and SME growth and learning effectiveness. The study provides practical insights tailored for SMEs navigating dynamic market environments like Vietnam, enriching theoretical understanding of SME strategic management within the trade and service sector.
In the current digital age, financial development has seen substantial shifts, particularly in buying and selling activities that are now facilitated by digital technology or electronic transactions (e-commerce), which offer convenience at relatively low costs. However, micro, small, and medium enterprises (MSMEs), which play a crucial role in the economy, must adapt to these advancements to sustain and grow their businesses. Despite the widespread adoption of e-commerce, many MSMEs have yet to fully capitalize on this technology. Limited knowledge often leads to hesitation in embracing e-commerce opportunities. Consequently, this study seeks to explore how innovation, information management, and e-commerce adoption impact MSME performance and its implications for business sustainability. The research targets MSME owners and managers in the Jabodetabek area (Jakarta, Bogor, Depok, Tangerang, and Bekasi) and nearby regions, with a sample of 420 individuals selected through random sampling. Data was collected through an online survey (Google Forms) administered to MSME management. The survey items were tested for validity and reliability, and the data analysis was conducted using various regression analyses with SEM-PLS and Smart-PLS3. The study’s findings highlight the following key points: 1) E-commerce adoption significantly enhances information management, which supports MSME sustainability; 2) E-commerce adoption also improves performance through better information management, further promoting MSME sustainability; 3) While technology is important, e-commerce adoption is the primary factor driving MSME sustainability, with technology serving as a secondary factor.
Copyright © by EnPress Publisher. All rights reserved.