The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
This research explores the interactions within supply chains in the manufacturing sector, with a special emphasis on the distinctive obstacles encountered by the mosquito coil industry. The study is motivated by the need to comprehensively understand and address the multifaceted challenges encountered by manufacturers in their supply chain processes. The mosquito coil industry holds significant importance in Malaysia, primarily due to the country’s tropical climate, which is conducive to mosquito proliferation and the transmission of mosquito-borne diseases. Nowadays, there are growing complexities and disruptions experienced by the mosquito coil sector’s supply chain, prompting an in-depth investigation. The main objective is to identify the challenges and resilience strategies employed by manufacturers in this sector, providing an understanding that contributes to the broader discourse on supply chain dynamics. Employing a qualitative case study methodology, this research engages in extensive data collection through interviews, document analysis, and direct observations within the selected mosquito coil manufacturing entity. This methodology allows for an immersive exploration of the challenges faced, revealing insights into the factors influencing the supply chain dynamics. The study reveals a wide array of challenges, from obtaining raw materials to managing distribution logistics, underscoring the unique complexities specific to the sector. As a result, the research identifies and analyzes resilience strategies implemented by the mosquito coil manufacturer to mitigate challenges, such as procurement challenges faced in financial related issues, logistical complexities occurred from recent years’ worldwide pandemic, production disruptions from company’s human resource-related issues, global factors from the company’s competitors and market challenges, and technology integration from rapid technological advancements. Thus, implications of this study extend beyond the mosquito coil sector, contributing valuable knowledge to the academic community, practitioners, and policymakers involved in supply chain management. The research not only addresses the identified challenges but also serves as a foundation for enhancing the overall understanding of manufacturing supply chain dynamics, thereby fostering informed decision-making for improved industry resilience.
Project risk management in the mining industry is necessary to identify, analyze and reduce uncertainty. The engineering features of mining enterprises, by their nature, require improved risk management tools. This article proves the relevance of creating a simulation model of the production process to reduce uncertainty when making investment decisions. The purpose of the study is to develop an algorithm for deciding on the economic feasibility of creating a simulation experiment. At the same time, the features and patterns of the cases for which the simulation experiment was carried out were studied. Criteria for feasibility assessment of the model introduction based on a qualitative parameters became the central idea for algorithm. The relevance of the formulated algorithm was verified by creating a simulation model of a potassium salt deposit with subsequent optimization of the production process parameters. According to the results of the experiment, the damage from the occurrence of a risk situations was estimated as a decrease in conveyor productivity by 32.6%. The proposed methods made it possible to minimize this risk of stops in the conveyor network and assess the lack of income due to the risk occurrences.
Food safety in supply chains remains a critical concern due to the complexity of global distribution networks. This study develops a conceptual framework to evaluate how food safety risks influence supply chain performance through predictive analytics. The framework identifies and minimizes food safety risks before they cause serious problems. The study examines the impact of food safety practices, supply chain transparency, and technological integration on adopting predictive analytics. To illustrate the complex dynamics of food safety and supply chain performance, the study presents supply chain transparency, technological integration, and food safety practices and procedures as independent variables and predictive analytics as a mediator. The results show that supply chain managers’ capacity to anticipate and control risks related to food safety can be improved by predictive analytics, leading to safer food production and distribution methods. The research recommends that businesses create scalable cloud-based predictive model solutions, combine data sources, and employ cutting-edge AI and machine learning tools. Companies should also note that strong, data-driven approaches to food safety require cooperative data sharing, regulatory compliance, training initiatives and ongoing improvement.
Copyright © by EnPress Publisher. All rights reserved.