This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
The mining industry significantly impacts the three pillars of sustainable development: the economy, the environment, and society. Therefore, it is essential to incorporate sustainability principles into operational practices. Organizations can accomplish this through knowledge management activities and diverse knowledge resources. A study of 300 employees from two of the largest mining corporations in South Kalimantan, Indonesia, found that four out of five elements of knowledge management—green knowledge acquisition, green knowledge storage, green knowledge application, and green knowledge creation—have a direct impact on the sustainability of businesses. The calculation was determined using Structural Equation Modelling (SEM). However, the study also found that the influence of collectivist cultural norms inhibits the direct effect of green knowledge sharing on corporate sustainable development. The finding suggests that companies operating in collectivist cultures may need to take additional measures to encourage knowledge sharing, such as rewarding employees for sharing their expertise on green initiatives, supportive organizational culture, clear expectations, and opportunities for social interaction.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
The food supply chain in South Africa faces significant challenges related to transparency, traceability, and consumer trust. As concerns about food safety, quality, and sustainability grow, there is an increasing need for innovative solutions to address these issues. Blockchain technology has emerged as a promising tool to enhance transparency and accountability across various industries, including the food sector. This study sought to explore the potential of blockchain technology in revolutionizing through promoting transparency that enable the achievement of sustainable food supply chain infrastructure in South Africa. The study found that blockchain technology used in food supply chain creates an immutable and decentralized ledger of transactions that has the capacity to provide real-time, end-to-end visibility of food products from farm to table. This increased transparency can help mitigate risks associated with food fraud, contamination, and inefficiencies in the supply chain. The study found that blockchain technology can be leveraged to enhance supply chain efficiency and trust among stakeholders. This technology used and/or applied in South Africa can reshape the agricultural sector by improving production and distribution processes. Its integration in the food supply chain infrastructure can equally improve data management and increase transparency between farmers and food suppliers.There is need for policy-makers and scholars in the fields of service delivery and food security to conduct more research in blockchain technology and its roles in creating a more transparent, efficient, and trustworthy food supply chain infractructure that address food supply problems in South Africa. The paper adopted a qualitative methodology to collect data, and document and content analysis techniques were used to interpret collected data.
In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the “heat island effect,” and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
Copyright © by EnPress Publisher. All rights reserved.