The Huaiyang Canal, a significant section of the Grand Canal, boasts representative tourist attractions. This study analysis of online reviews from Ctrip and Mahive using R language, Gephi, ROST CM, and SPSS has provided insights into tourists’ perceptions of the Huaiyang Canal’s image. Key findings include: (1) Dominant landscape images encompass gardens, canals, and buildings, emphasizing the historical and cultural assets. Both cultural and natural landscapes equally captivate tourists. (2) The canal’s tourism image perception follows a “garden-history-canal” hierarchy with the canal as the central space and history expanding its tourism features. (3) The perceptions can be categorized into historical and cultural landscapes, man-made projects, and attraction perception. Despite varying tourist numbers in Huaian and Yangzhou, scenic spot experiences are similar. The overall perception of tourists is largely positive, but some express concerns about service attitudes and travel time planning.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
This research conducts a comparative urban analysis of two coastal cities with analogous tourism models situated in distinct geographical regions: Balneário Camboriú in Brazil and Benidorm in Spain. The study delves into two critical urban phenomena impacting the sustainability of tourist cities, utilising social network data to gather insights into economic and urban activities (Google Places) and spatio-temporal patterns of citizen presence (Twitter). The spatial analysis explores the municipal and, to a more detailed extent, the coastal strip extending 500 m inland from the coastline, spanning the entire length of each city to their municipal boundaries. The analysis uncovers both similarities and differences between the two destinations, offering insights that could inform future development strategies aimed at fostering sustainable urban environments in these well-established coastal tourist areas.
This paper presents an assessment approach to fostering socioeconomic re-development and resilience in Iraqi regions emerging from the destruction and instability, in the aftermath of the war conflict in Iraq. Focusing on the intricate interplay of logistics infrastructure and economic recovery, the present study proposes a novel framework that integrates general resilience insights, data analytics, infrastructure systems, and decision support from Data Envelopment Analysis (DEA). We draw inspiration also from historical cases on “creative destruction” or “Blessing in Disguise” (BiD) phenomena, like the post-WWII reconstruction of Rotterdam, so as to develop the notion of stepwise or cascadic prosilience, analyzing how innovative logistics systems may in various stages contribute to economic rejuvenation. Our approach recognizes the multifaceted nature of regional resilience capacity, encompassing both static (conserving resources, rerouting, etc.) and dynamic (accelerating recovery through innovative strategies) dimensions. The logistics aspect spans both the supply side (new infrastructure, ICT facilities) and the demand side (changing transportation flows and product demands), culminating in an integrated perspective for sustainable growth of Iraqi regions. In our study, we explore several forward-looking strategic future options (scenarios) for recovery and reconstruction policy factors in the context of regional development in Iraq, regarding them as crucial strategic elements for effective post-conflict rebuilding and regeneration. Given that such assets and infrastructures typically extend beyond a single city or area, their geographic scope is broader, calling for a multi-region approach. By leveraging the extended DEA approach by an incorporation of a super-efficiency (SE) DEA approach so as to better discriminate among efficient Decision-Making Units (DMUs)—in this case, regions in Iraq—our research aims to present actionable and effective insights for infrastructure investment strategies at regional-governorate scale in Iraq, that optimize efficiency, sustainability and resilience. This approach may ultimately foster prosperous and stable post-conflict regional economies that display—by means of a cascadic change—a new balanced prosilient future.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
Copyright © by EnPress Publisher. All rights reserved.