This study aims to identify the causes of delays in public construction projects in Thailand, a developing country. Increasing construction durations lead to higher costs, making it essential to pinpoint the causes of these delays. The research analyzed 30 public construction projects that encountered delays. Delay causes were categorized into four groups: contractor-related, client-related, supervisor-related, and external factors. A questionnaire was used to survey these causes, and the Relative Importance Index (RII) method was employed to prioritize them. The findings revealed that the primary cause of delays was contractor-related financial issues, such as cash flow problems, with an RII of 0.777 and a weighted value of 84.44%. The second most significant cause was labor issues, such as a shortage of workers during the harvest season or festivals, with an RII of 0.773. Additionally, various algorithms were used to compare the Relative Importance Index (RII) and four machine learning methods: Decision Tree (DT), Deep Learning, Neural Network, and Naïve Bayes. The Deep Learning model proved to be the most effective baseline model, achieving a 90.79% accuracy rate in identifying contractor-related financial issues as a cause of construction delays. This was followed by the Neural Network model, which had an accuracy rate of 90.26%. The Decision Tree model had an accuracy rate of 85.26%. The RII values ranged from 68.68% for the Naïve Bayes model to 77.70% for the highest RII model. The research results indicate that contractor financial liquidity and costs significantly impact construction operations, which public agencies must consider. Additionally, the availability of contractor labor is crucial for the continuity of projects. The accuracy and reliability of the data obtained using advanced data mining techniques demonstrate the effectiveness of these results. This can be efficiently utilized by stakeholders involved in construction projects in Thailand to enhance construction project management.
The rapid progress of information technology has made public online participation in policy formulation an inevitable product of modern government reshaping and reconstruction. However, compared with developed countries, citizens’ online participation in policy formulation in China started relatively late. Thus, in order to explore an effective and efficient method for Chinese citizens’ participation in policy formulation, this research made a brief review of the experiences from the typical developed country of United States of America at first, followed by some other developed countries such as Singapore, South Korea, and Japan in Asia with similar situations. Still, combined with the current situation of the China itself into consideration, this research further proposes targeted recommendations. It is expected that the findings in this research could provide some references for the Chinese government to form more effective and efficient theoretical frameworks targeted at the future development trends of the Chinese society and accordingly, to improve the construction of democracy in China.
The PPP scholarly work has effectively explored the material values attached to PPPs such as efficiency of services, value for money and productivity, but little attention has been paid to procedural public values. This paper aims to address this gap by exploring how Enfidha Airport in Tunisia failed to achieve both financial and procedural values that were expected from delivering the airport via the PPP route, and what coping strategies the public and private sectors deployed to ameliorate any resultant value conflicts. Based on the analysis of Enfidha Airport, it is argued that PPP projects are likely to fail to deliver financial and procedural values when the broader institutional context is not supportive of PPP arrangements, and when political and security risks are not adequately counted for during the bidding process.
The US Infrastructure Investment and Job Act (IIJA), also commonly referred to as the Bipartisan Infrastructure Bill, passed in 2021, has drawn international attention. It aims to help to rebuild US infrastructure, including transportation networks, broadband, water, power and energy, environmental protection and public works projects. An estimated $1.2 trillion in total funding over ten years will be allocated. The Bipartisan Infrastructure Bill is the largest funding bill for US infrastructure in the recent history of the United States. This review article will specifically discuss funding allocations for roads and bridges, power and grids, broadband, water infrastructure, airports, environmental protection, ports, Western water infrastructure, electric vehicle charging stations and electric school buses in the new spending of the Infrastructure Investment and Job Act and why these investments are urgently necessary. This article will also briefly discuss the views of think tank experts, the public policy perspectives, the impact on domestic and global arenas of the new spending in the IIJA, and the public policy implications.
Copyright © by EnPress Publisher. All rights reserved.