This study examines the impact of emotional intelligence (EI) and employee motivation on employee performance within the telecommunication industry in the Sultanate of Oman. The target population consisted of 4344 non-managerial employees across nine telecommunication companies, including Omantel, Ooredoo, Vodafone, Oman Broadband Company, Awasr Oman & Co, TEO, Oman Tower Company L.L.C, Helios Tower, and Connect Arabia International. Employing a deductive research approach, finally data were collected via an online survey from 354 respondents. The hypotheses were tested using multiple regression analysis. The results indicate that all dimensions of EI self-awareness, self-regulation, empathy, and social skills positively and significantly influence employee performance, with social skills having the strongest effect. Furthermore, both intrinsic motivation factors, such as work itself and career development, and extrinsic motivation factors, including wages, rewards, working environment, and co-worker relationships, significantly enhance employee performance. The interaction between EI and employee motivation was found to amplify these positive effects. Among control variables, age and education level showed significant impacts, while gender did not. These findings underscore the critical role of both emotional intelligence and motivation in driving employee performance. The study suggests that managers and policymakers should adopt integrated strategies that develop EI competencies and enhance motivational factors to optimize employee performance, thereby contributing to the success of organizations in the telecommunication sector.
This study addresses the impact of the tourism sector on poverty, poverty depth, and poverty severity in Indonesia, focusing on the micro-level dynamics in the province. Despite numerous tourism destinations, their strategic contribution to regional progress remains underexplored. The motivation stems from the need to comprehend the nuanced relationship between tourism and poverty at both the national and local levels, with specific attention to the untapped potential at the province level in Indonesia. We hypothesize that a higher tourism sector GRDP will be inversely correlated with poverty levels, and the inclusion of a Covid-19 variable will reveal a structural impact on poverty dynamics. Employing a Panel Regression Model, secondary data from the Central Statistics Agency (BPS) spanning 2011–2020 is utilized. A panel data regression equation model, including CEM, FEM, and REM, is employed to analyze the intricate relationship between tourism and poverty. The findings demonstrate a negative correlation between higher tourism sector GRDP and the number of poor people. The Covid-19 variable, considered a structural break, reveals a significant association between increased cases and elevated poverty and severity across Indonesian provinces. This study contributes a micro-level analysis of tourism’s role, emphasizing its impact at the provincial level. The findings underscore the need for strategic initiatives to harness the untapped potential of tourism in alleviating poverty and promoting regional progress.
The study investigates the impact of corporate gender diversity on dividend payouts in Asia-Pacific countries. The study used the data of 610 listed firms in the Asian Pacific region over eleven years, from 2006 to 2016, with 6710 observations. The regression results revealed that the representation of women on board and at least 30% on board positively relates to dividend payout. Board size and board independence have a significant negative relationship with dividend payouts. Overall, results suggest that gender diversity on corporate boards has a greater propensity to pay dividends in the mix of ownership structure, strong and weak corporate governance compliance, and horizontal agency conflict.
The present study attempted to assess the impact of fundamental ratios on the share prices of selected telecommunication companies in India. India has dramatically expanded over the past ten years to become the second-biggest telecoms market worldwide, with 1.17 billion users. The Indian telecom industry has proliferated thanks in part to the government of India’s liberal and reformist policies and strong customer demand. It has become a lucrative investment sector for investors due to its recent and prospective growth. Data on 13 telecom firms indexed in the S&P BSE telecommunication index from 2013 to 2022 were taken from companies’ annual reports, the BSE website (Bombay Stock Exchange), and other secondary sources. Six firm-specific fundamental factors viz. Debt to Equity ratio (D/E), Current ratio (CR), Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to earnings ratio (P/E), Return on equity (ROE), and three country-specific fundamental factors viz. Gross Domestic Product, Inflation rate, and S&P BSE Sensex return were considered. Fixed effect panel regression through Generalized Least Square (GLS) model was performed to find inferences. Debt Equity ratio and Inflation rate were found to impact share price negatively. Conversely, the Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to Earnings ratio (P/E), and Return on Equity (ROE) positively impacted selected companies’ share prices. The study results will benefit individual & institutional investors in formulating their investment and portfolio diversification strategies for gaining a high effective rate of return on their investments.
This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
Copyright © by EnPress Publisher. All rights reserved.