Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
Tourism experiences are inherently multisensory, engaging visitors’ senses of sight, sound, smell, taste, and touch. This study addresses the gap in literature by investigating the impact of visual and auditory landscapes on tourist emotions and behaviors within coastal tourism settings, using the Stimulus-Organism-Response (SOR) model. Data collected from tourists in Sanya, China, were analyzed using structural equation modeling. The results indicate that both visualscape and soundscape significantly influence tourist emotions (pleasure and arousal) and subsequent loyalty. Pleasure and arousal mediate the relationships between environmental stimuli and tourist loyalty, emphasizing their roles as emotional bridges between the environment and behaviors. These findings highlight the importance of integrating local cultural and community elements into tourism to enhance socio-economic benefits and ensure sustainable development. By fostering a deep connection between tourists and the local environment, these sensory experiences support the preservation of cultural heritage and promote sustainable tourism practices, aligning with the goals of economic development and public policy. The study contributes to the theoretical understanding of multisensory tourism by integrating the SOR model in coastal tourism and emphasizes the roles of visual and auditory stimuli. Practically, it provides insights for tourism managers to improve tourist experiences and loyalty through careful management of sensory elements. This has implications for infrastructure development, particularly in enhancing the quality of soft infrastructure such as cultural and social systems, which are crucial for sustainable tourism and community well-being. Future research could include additional sensory dimensions and diverse destinations for a comprehensive understanding of sensory influences on tourist behaviors and emotions. This research aligns with the broader goals of the policy and development by addressing critical aspects of infrastructure and socio-economic development within the tourism sector.
Every year, hundreds of fires occur in the forests and rangelands across the world and damage thousands hectare of trees, shrubs, and plants which cause environmental and economic damages. This study aims to establish a real time forest fire alert system for better forest management and monitoring in Golestan Province. In this study, in order to prepare fire hazard maps, the required layers were produced based on fire data in Golestan forests and MODIS sensor data. At first, the natural fire data was divided into two categories of training and test samples randomly. Then, the vegetation moisture stresses and greenness were considered using six indexes of NDVI, MSI, WDVI, OSAVI, GVMI and NDWI in natural fire area of training category on the day before fire occurrence and a long period of 15 years, and the risk threshold of the parameters was considered in addition to selecting the best spectral index of vegetation. Finally, the model output was validated for fire occurrences of the test category. The results showed the possibility of prediction of fire site before occurrence of fire with more than 80 percent accuracy.
The silver nanoparticles (AgNPs) exhibit unique and tunable plasmonic properties. The size and shape of these particles can manipulate their localized surface plasmon resonance (LSPR) property and their response to the local environment. The LSPR property of nanoparticles is exploited by their optical, chemical, and biological sensing. This is an interdisciplinary area that involves chemistry, biology, and materials science. In this paper, a polymer system is used with the optimization technique of blending two polymers. The two polymer composites polystyrene/poly (4-vinylpyridine) (PS/P4VP) (50:50) and (75:25) were used as found suitable by their previous morphological studies. The results of 50, 95, and 50, 150 nm thicknesses of silver nanoparticles deposited on PS/P4VP (50:50) and (75:25) were explored to observe their optical sensitivity. The nature of the polymer composite embedded with silver nanoparticles affects the size of the nanoparticle and its distribution in the matrix. The polymer composites used are found to have a uniform distribution of nanoparticles of various sizes. The optical properties of Ag nanoparticles embedded in suitable polymer composites for the development of the latest plasmonic applications, owing to their unique properties, were explored. The sensing capability of a particular polymer composite is found to depend on the size of the nanoparticle embedded in it. The optimum result has been found for silver nanoparticles of 150 nm thickness deposited on PS/P4VP (75:25).
Cancer is the 3rd leading cause of death globally, and the countries with low-to-middle income account for most cancer cases. The current diagnostic tools, including imaging, molecular detection, and immune histochemistry (IHC), have intrinsic limitations, such as poor accuracy. However, researchers have been working to improve anti-cancer treatment using different drug delivery systems (DDS) to target tumor cells more precisely. Current advances, however, are enough to meet the growing call for more efficient drug delivery systems, but the adverse effects of these systems are a major problem. Nanorobots are typically controlled devices made up of nanometric component assemblies that can interact with and even diffuse the cellular membrane due to their small size, offering a direct channel to the cellular level. The nanorobots improve treatment efficiency by performing advanced biomedical therapies using minimally invasive operations. Chemotherapy’s harsh side effects and untargeted drug distribution necessitate new cancer treatment trials. The nanorobots are currently designed to recognize 12 different types of cancer cells. Nanorobots are an emerging field of nanotechnology with nanoscale dimensions and are predictable to work at an atomic, molecular, and cellular level. Nanorobots to date are under the line of investigation, but some primary molecular models of these medically programmable machines have been tested. This review on nanorobots presents the various aspects allied, i.e., introduction, history, ideal characteristics, approaches in nanorobots, basis for the development, tool kit recognition and retrieval from the body, and application considering diagnosis and treatment.
Copyright © by EnPress Publisher. All rights reserved.