Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
Some developmental projects are created by people-private partnerships (PPP), particularly where recovery is acquirable by levying the users. Such PPPs are successful for construction of roads, bridges, running toilet facilities and conveyance facility in mode of use and pay. Likewise, public-scientist partnerships (PSPs) will be successful, where monitored impacts can be used to derive benefit. But such example cases are not so popular in utilizing new research results and derive benefits from natural resources and enhance productivity. There is a demand for similar partnership projects in research area. In this study modality of the PSP to create boost engine for natural resource conservation and bring economic prosperity is established. A novel PSP launch was synthesized on useful food crop viz. finger millet (Elusiane corcona (l)), which has been known since long past, and now is regaining popularity. It was possible to enhance additional annual production of 5.755 million tonnes of finger millet grain, equivalent to additional income of Rs 11,510 crores. Against this the scientist partnership share was 0.49x million tonnes grain and economic equivalency of Rs 992 crores, which was just 7–8%, with same level of input in agriculture. Additional benefits were sustainability of production and resources consecration, reduction of greenhouse gas emission (GHGs), particularly nitrous oxide (N2O), largely emanating from agriculture and responsible for depletion of ozone layer. The finger millet stiff stem will be useable for production of ply-board filling material that will be innovative building material for housing and infrastructure developments and making furniture.
In this paper, electrically conductive composites comprised of silicone rubber and titanium diboride (TiB2) were synthesized by conventional mixing methods. Fine particles of TiB2 (in micron size) and 10 parts per hundred parts of rubber (phr) proportion of carbon black (XC-72) were used to make the composites with HTV silicone rubber. The composites were cured at appropriate temperature and pressure and the effect on the electrical properties was studied. The resistance of the silicone rubber is ~ 1015Ω which decreases to 1–2 kΩ in case of composites with negligible effect of heat ageing. The hardness increases by ~ 35% simultaneous to the decrease of ~ 47% in the tensile strength. Morphological characterization indicates the homogeneous dispersion of the fillers in the composite.
The use of saline water in agriculture is a viable alternative, considering the increased demand for fresh water. The objective of this study was to evaluate the growth and phytomass production of sugar beet under irrigation with water of different saline concentrations in a field experiment on the campus of the Federal University of Alagoas in Arapiraca. The treatments were five levels of electrical conductivity (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1). The design was in randomized blocks, with four repetitions. The maximum yield of sugar beet at 27 days after the application of saline treatments was obtained with a salinity of 3.0 dS m-1, for the variables plant height (PA), stem diameter (CD), root length (RC), aboveground dry phytomass (FSPA) and total dry phytomass (FST). At 42 days after the application of saline treatments, the variables aboveground fresh phytomass (FFPA), root fresh phytomass (FFR), total fresh phytomass (FFT), aboveground dry phytomass (FSPA) and total dry phytomass (FST) increased with increasing water salinity. Rain may have influenced the results obtained for the evaluations, performed at 42 days after the application of the saline treatments.
BiVO4 was hydrothermally synthesized under different preparing conditions and characterized by XRD, SEM, Raman spectrum and BET specific surface area. The influence of different pH value and annealing temperature and hydrothermal time on the morphologies and structures of the BiVO4 samples was investigated systematically. It can be found that annealing would eliminate the effects caused by the pH of precursor, heating temperature and heating time, but preparing conditions still influenced the size and specific surface area of samples. Furthermore, the photocatalytic activities of the fabricated BiVO4 were also evaluated by the degradation of methyl blue in aqueous solution under UV and visible light irradiation.
Cucumber Variety ‘Drite L108’ (Cucumis sativus L. Cv. Derit L108) was selected as the test material. In the solar greenhouse, different days (1, 3, 5, 7, 9 d) of light (PAR < 200 µmol·m-2·s-1) and normal light conditions were designed with shading nets to observe the growth indexes of cucumber plants and the changes of antioxidant enzyme activities in leaves. The results showed that: (1) continuous low light increased the SPAD (relative chlorophyll) value of cucumber leaves and decreased the net photosynthetic rate. The longer the continuous low light days are, the smaller the net photosynthetic rate of cucumber leaves and the worse the photosynthetic recovery ability would be. (2) The plant height, stem diameter and leaf area per plant were lower than CK, and the above indexes could not return to the normal level after 9 days of normal light recovery; the yield and marketability of cucumber fruit decreased under continuous low illumination. (3) The activities of SOD (superoxide dismutase) and POD (peroxidase) in cucumber leaves increased, the activities of CAT (catalase) first increased and then decreased, and the content of MDA (malondialdehyde) continued to increase. The longer the days of continuous light keep, the more seriously the cucumber leaves were damaged by membrane lipid peroxidation. After continuous light for more than 7 days, the metabolic function of cucumber leaves was difficult to recover to the normal level.
Copyright © by EnPress Publisher. All rights reserved.