This paper presents a brief review of risk studies in Geography since the beginning of the 20th century, from approaches focused on physical-natural components or social aspects, to perspectives that incorporate a systemic approach seeking to understand and explain risk issues at a spatial level. The systemic approach considers principles of interaction between multiple variables and a dynamic organization of processes, as part of a new formulation of the scientific vision of the world. From this perspective, the Complex Systems Theory (CST) is presented as the appropriate conceptual-analytical framework for risk studies in Geography. Finally, the analysis and geographic information integration capabilities of Geographic Information Systems (GIS) based on spatial analysis are explained, which position it as a fundamental conceptual and methodological tool in risk analysis from a systemic approach.
This paper carries out an analysis and reflection on how technoscience reaches Geography through Geographic Information Technologies, how it impacts the production of geographic knowledge and how it derives in the possibility of digital experimentation in the discipline in an environment called geo-digital reality. It is shown that advances in GIT have allowed overcoming old limitations, enriching more and more the observations made by Geography, and it is also highlighted the promising future of digital experimentation in Geography through all the possibilities offered by current technological developments.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
This paper discusses the dawn of cognitive neuroscience in management and organizational research. The study does that in two tiers: first, it reviews the interdisciplinary field of organizational cognitive neuroscience, and second, it analyzes the role organizational cognitive neuroscience (OCN) could play in reducing counterproductive workplace behaviors (CWB). Theoretically, the literature has established the benefits of a neuro-scientific approach to understanding various organizational behaviors, but no research has been done on using organizational neuroscience techniques to study counterproductive work behaviors. This paper, however, has taken the first step towards this research avenue. The study will shed light on this interdisciplinary field of organizational cognitive neuroscience (OCN) and the benefits that organizations can reap from it with respect to understanding employee behavior. A research agenda for future studies is provided to scholars who are interested in advancing the investigation of cognition in counterproductive work behaviors, also by using neuroscience techniques. The study concludes by providing evidence drawn from the literature in favor of adopting an OCN approach in organizations.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
Copyright © by EnPress Publisher. All rights reserved.