In this paper, a series of Li3V2(PO4)3/C composite nanofibers is prepared by a facile and environmentally friendly electrospinning method and calcined under different temperatures. The LVP nanofiber calcined under 900 ℃ exhibits the best electrochemical performance. The bicontinuous morphologies of LVP/CNF are the fibers shrunk and the LVP crystals simultaneously grown. At the range of 3.0–4.3 V, LVP/CNF obtained under 900 ℃ delivers the initial capacity of 135 mAh/g, close to the theoretical capacity of LVP. Even at high current density, the sample of LVP/CNF still presents good electrochemical performance.
This paper presents the state of displacement of a multilayered composite laminate subjected to transverse static load with varying balance, symmetric and anti-symmetric angle-ply and cross-ply staking sequences. Higher-order shear deformation theory (HSDT) is considered in the finite element formulation of nine-noded isoparametric element with seven degrees of freedom at each node. The finite element formulation is transformed into computer codes. A convergence study is carried out first to obtain the optimal mesh size for minimizing the computational time. The maximum deflection at the center of plate for both fixed and simply supported edges is verified with reported literature and a good conformity is found. An attempt has been made to observe the minimum value of maximum deflection in the laminate for attaining the maximum strength of laminate with a suitable combination of stacking sequences with a constant volume of material.
In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
The wet saturated flue gas discharged by coal-fired utility boilers leads to a large amount of low-temperature waste heat loss. Inorganic ceramic membrane is acid-base resistant and has strong chemical stability. It is an ideal material for recovering low-temperature waste heat from flue gas. The experiment of waste heat recovery of flue gas was carried out with inorganic ceramic membrane as the core, and the characteristic parameters of low-temperature flue gas at the tail of the boiler were analyzed; taking 316 L stainless steel as the comparative object, the strengthening effect of inorganic ceramic film on improving heat recovery power and composite heat transfer coefficient was discussed. The results show that the waste heat recovery of flue gas is mainly the evaporation latent heat recovery of water, accounting for about 90%; circulating water is used as cooling medium, and the waste heat recovery capacity of flue gas is stronger; compared with circulating water, when air is used as the cooling medium, the effect of inorganic ceramic membrane flue gas waste heat recovery is more significant, and the enhancement coefficient is as high as 9; increasing the flue gas flow is helpful to improve the heat recovery power and composite heat transfer coefficient; at the same time, inorganic ceramic membrane can also recover condensate with high water quality. The results of this paper can provide a reference for the application of inorganic ceramic membrane in flue gas waste heat recovery.
The application of nanotechnology in the food industry enables prioritization of consumers’ needs. Nanotechnology has the ability to provide new forms of control on food structure; therefore, this technology has higher industrial value. This paper briefly introduces the main concepts of nanotechnology and its correlation with size reduction performance. This paper also introduces the main nanobjects and their potential applications in food, and summarizes various studies and their applications in food industry.
Copyright © by EnPress Publisher. All rights reserved.