The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
The study’s goal was to investigate the impact of e-learning determinants on student satisfaction and intention to use e-learning tools. The dependent and independent variables in this study were based on the technological acceptance model. The study examines three determinants, including usefulness, ease of use, and facilitating conditions, as independent variables, while student satisfaction and intention to use were used as dependent variables. Additionally, this study is unique by adding student satisfaction as a dependent variable and a mediator to examine the relationship between e-learning determinants and intention to use. A questionnaire was prepared and distributed to 324 undergraduate students from Jordan’s private universities on the basis of a convenience sample. The proposed hypotheses were investigated using the quantitative techniques of regression in SPSS and SEM in AMOS. The findings of this study revealed that student satisfaction and intention to use e-learning were positively impacted by e-learning determinants. It found that intention to use was positively impacted by student satisfaction. Furthermore, e-learning intention to use was found to be positively impacted by e-learning determinants via student satisfaction. Universities and other educational institutions are advised to identify the appropriate e-learning determinants that satisfy students’ demands and motivate them to use e-learning tools in light of the study’s findings. Private universities can accomplish their goals, stay ahead of the competition, and obtain a competitive advantage by properly understanding e-learning determinants, student satisfaction, and the application of successful e-learning solutions.
Good health and well-being are embedded in the 3rd Goal amongst the UN Sustainable Development Goals. The primary objective of this research was to identify the most critical economic, social, and administrative barriers to implementing the Expanded Program on Immunization (EPI) in the Punjab Province of Pakistan. A sequential exploratory design and case study technique were used, employing both qualitative and quantitative methods. In the first stage, in-depth interviews with 50 key officials were conducted to identify the most critical barriers to the EPI program. A quantitative analysis was then performed based on the results obtained from qualitative analysis, and rank orders of barriers were received from the same health department experts. The results indicate that twenty-eight barriers can cause implementation problems for this program. Still, the ten barriers that gained the maximum hits are the most important barriers, which include Shortage of vaccinators, mismanagement of vaccines’ cold chain, biometric android application, ice-lined refrigerators, communication gap, inadequate legislation of EPI program, capacity building issues with EPI staff, Misconceptions about EPI program, lack of awareness of the parents and community, refusal cases and inadequate cooperation of lady health workers (LHWs). Coordinated efforts of the government and the public are highly recommended to address these barriers.
In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
Copyright © by EnPress Publisher. All rights reserved.