Graphene, an innovative nanocarbon, has been discovered as a significant technological material. Increasing utilization of graphene has moved research towards the development of sustainable green techniques to synthesize graphene and related nanomaterials. This review article is basically designed to highlight the significant sustainability aspects of graphene. Consequently, the sustainability vision is presented for graphene and graphene nanocomposites. Environmentally sustainable production of graphene and ensuing nanomaterials has been studied. The formation of graphene, graphene oxide, reduced graphene oxide, and other derivatives has been synthesized using ecological carbon and green sources, green solvents, non-toxic reagents, and green routes. Furthermore, the utilization of graphene for the conversion of industrial polymers to sustainable recycled polymers has been studied. In addition, the recycled polymers have also been used to form graphene as a sustainable method. The implication of graphene in the sustainable energy systems has been investigated. Specifically, high specific capacitance and capacitance retention were observed for graphene-based supercapacitor systems. Subsequently, graphene may act as a multi-functional, high performance, green nanomaterial with low weight, low price, and environmental friendliness for sustainable engineering and green energy storage applications. However, existing challenges regarding advanced material design, processing, recyclability, and commercial scale production need to be overcome to unveil the true sustainability aspects of graphene in the environmental and energy sectors.
This research paper explores the influence of first-order chemical reactions on the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant implications for various engineering applications, including energy generation, aerospace engineering, and material processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the complexity of the fluid dynamics.
This paper examines the sustainability practices implemented by healthcare establishments, mainly Small and Medium enterprises (SMEs), We focus on identifying opportunities with challenges involved. This systematic literature analyses 47 studies that explore sustainability practices in the healthcare system globally. The finding from the studies reveals that healthcare organizations with SMEs adopt diverse measures like renewable energy, a reduction, and a response procurement in minimizing the impact on the environment and ensuring financial stability. The challenges SMEs face comprise limited financial resources, lack of expertise, with difficulties accessing information and support. Furthermore, we suggest opportunities for SMEs to enhance sustainability practices with partnerships with other organizations and investing in educating employees. Implementation of sustainability practices will improve the financial stability, and environmental impact, with the wellbeing of healthcare stakeholders. The empirical evidence, comparative studies with cross-disciplinary are needed in exploring the effectiveness of the different suitability practices, potential trade-offs, synergies between sustainability and other organizational goals, the effect of sustainability practice in the financial with non-financial performance on SMEs in healthcare establishment are positive, with cost-effectiveness, efficiencies operations, improving brand reputations and engaging the employee. Established factors like regulating frameworks and government initiatives play a major role in the influence of adopting sustainability practices with cultural factors.
According to the United Nations, by 2050, about 68% of the world’s population will live in urban areas. This population increase requires environmental resilience and planning ability to reduce the negative environmental impacts associated with growth. In this scenario, life cycle analysis, whose standards were introduced by ISO 14000 series, is an essential tool. From this perspective, smart cities whose concern about environmental sustainability is paramount corroborating SDG 11. This study aims to provide a holistic view of environmental technologies developed by Brazilian inventors, focused on life cycle analysis, which promotes innovation by helping cities build greener, more efficient, resilient, and sustainable environments. The methodology of this article was an exploratory study and investigated the scenario of patents in the life cycle. 209 patent processes with Brazilian inventors were found in the Espacenet database. Analyzing each of the results individually revealed processes related to air quality, solid waste, and environmental sanitation. The review of patent processes allowed mapping of the technological advances linked to life cycle analysis, finding that the system is still little explored and can present competitive advantages for cities.
Highly nutritive and antioxidants-enriched okra (Abelmoschus esculentus) gets sub-optimal field yield due to the irregular germination coupled with non-synchronized harvests. Hence, the research aimed at assessing the combined impact of seed priming and field-level gibberellic acid (GA3) foliar spray on the yield and post-harvest quality of okra. The lab studies were conducted using a complete randomized design (CRD), while the field trials were performed following a factorial randomized complete block design (RCBD) with three replications. Okra seeds were subjected to ten different priming methods to assess their impact on seed germination and seeding vigor. In the premier step, okra seeds were subjected to ten different priming methods, like hydro priming for 6, 12, and 18 h, halo priming with 3% NaCl at 35 ℃, 45 ℃, and 60 ℃, acid priming with 80% H2SO4 for 2.5, 5, and 10 min. Based on the observation, hydro priming for 12 h exhibited the best germination rate (90%), followed by halo seed priming at 60 ℃ and acid priming for 5 min. Furthermore, the halo priming at 60 ℃ demonstrated the greatest seedling vigor index (1965), whereas acid priming for 5 min resulted in favorable outcomes in terms of early emergence in 2.66 days. In addition, varying concentrations of GA3 (0, 100, 200, and 300 ppm) were also administered to the best three primed seedlings for evaluating their field performance. The findings indicated that applying GA3 at a concentration of 300 ppm to seedlings raised through acid priming (80% H2SO4 for 5 min) resulted in improved leaf length, reduced time to flowering (first and 50%) and harvest, increased pod diameter, individual pod weight, and yield per plant (735.16 g). Additionally, the treatment involving GA3 at 300 ppm with halo priming (3% NaCl) at 60 ℃ exhibited the longest shelf life (21 days) of okra with the lowest levels of rotting (6.73%) and color change (1.12) in the polyethylene storage condition.
The selection of a suitable place for an activity is an important decision made for a project, which requires assessing it from different points of view. Educational use is one of the most complicated and substantial uses in urban space that requires precise and logical attention to its location and neighborhood with similar and consistent uses. Faculties of universities are educational spaces that should be protected against physical and moral damage to create a healthy educational environment. To do this, it is necessary to find and assess the factors affecting the location of educational spaces. The extant study aimed at finding and assessing the factors affecting the location of educational spaces to locate art and architecture schools or faculties in 4 important universities. The present study is applied developmental research in terms of nature and descriptive-analytical in terms of method. This study used the AHP (Analytical Hierarchy Process) weighing and controlled the prioritization through the TOPSIS (Technique for Order Preference by Similarity) technique in the methodology phase. Since there was no criterion and metric for these centers, six were chosen as the primary metrics after reviewing the relevant theoretical foundations, early investigations, and collecting effective data. Finally, the results indicated the most important factors of vehicular or roadway access, pedestrian access, slope, parking, adjacency, neighborhood, and area. Among the mentioned factors, pedestrian access (w: 0.4231) had the highest weight and was the priority in the location of architecture faculty in studied campuses and areas inside the universities.
Copyright © by EnPress Publisher. All rights reserved.