The augmentation of firm performance via customer concentration is particularly indispensable for organizational evolution. Both trade credit financing and financing constraints play pivotal roles in the nexus between customer concentration and performance. This research constructs a moderated mediation model to rigorously investigate the impact of customer concentration on firm performance, positing trade credit financing as the mediating variable and financing constraints as the moderating variable. The relevant hypotheses are evaluated empirically using panel data compiled from listed manufacturing firms in China over the period 2013–2020, yielding 8 firm-year observations. The empirical outcomes denote that customer concentration exerts a positive influence on firm performance, albeit having a negative impact on trade credit financing. Trade credit financing serves as a partial mediator in the relationship between customer concentration and manufacturing firm performance. Financing constraints are found to positively moderate the mediating role of trade credit financing in the relationship between customer concentration and firm performance. This research broadens the understanding of the implications of customer relationships on trade credit financing and performance, thereby enriching the knowledge base for managing a firm’s financing channels more effectively.
The emission trading scheme (ETS) is arguably one of the most effective approaches for encouraging industries to transition to a low-carbon economy and, as a result, assisting nations in meeting their goals under the United Nations Framework Convention on Climate Change to mitigate the challenge of climate change. ETS is gaining popularity as more governments throughout the world contemplate implementing it, particularly in developing countries. Much of the existing research has concentrated on debates concerning ETS operations in developed nations. This study is to give a discourse of the success criteria for ETS implementation that have been identified in the literature and then cross-referenced in the context of Malaysia. For this, the research used an integrated approach of scoping review of existing literature and in-depth interviews with Malaysian stakeholders. Using Narassimhan et al. (2018)’s ETS assessment framework, the scoping review identified five major attributes that lead to successful ETS implementation in a global context that are environmental effectiveness, economic efficiency, market management, stakeholder engagement, and revenue management. In-depth interviews with several groups of discovered stakeholder engagement as an essential attribute that would play a critical role in advancing ETS implementation in Malaysia. The study concludes by proposing a complete strategy based on empirical information and first-hand narratives, providing useful insights for politicians, industry players, and environmental activists. The recommendation is especially important as Malaysia strives to improve its commitment to sustainable and responsible development in light of the challenges posed by climate change.
Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
Cocoa is important for the economy and rural development of Ghana. However, small-scale cocoa production is the leading agricultural product driver of deforestation in Ghana. Uncertain tree tenure disincentivizes farmers to retain and nurture trees on their farms. There is therefore the call for structures that promote tree retention and management within cocoa farming. We examined tenure barriers and governance for tree resources on cocoa farms. Data was collected from 200 cocoa farmers from two regions using multistage sampling technique. Information was gathered on tree ownership and fate of tree resources on cocoa farms, tree felling permit acquisition and associated challenges and illegal logging and compensation payments on cocoa farms. Results suggest 62.2% of farmers own trees on their farms. However, these farmers may or may not have ownership rights over the trees depending on the ownership of their farmlands. More than half of the farmers indicated they require felling permits to harvest trees on their farms, indicative of the awareness of established tree harvesting procedures. Seventy percent of the farmers have never experienced illegal logging on their farms. There is however the need to educate the remaining 30% on their rights and build their compensation negotiation powers for destructions to their cocoa crops. This study has highlighted ownership and governance issues with cocoa farming and it is important for the sustainability of on-farm tree resources and Ghana’s forest at large.
Nowadays, copper and zinc nanoparticles are widely employed in a variety of applications. With nanoscale particle sizes, copper oxide/zinc oxide composite is easily synthesized using a variety of techniques, including hydrothermal, microwave, precipitation, etc. In the current work, chemical precipitation is used to create a copper oxide/zinc oxide nanocomposite. XRD analysis was used to determine the nanocomposite’s structural characteristics. Through SEM analysis, the surface morphological properties are investigated. EDAX is used to study the chemical composition of produced materials, while UV/Visible spectroscopy is used to determine their optical properties. The assessment of the copper oxide/zinc oxide nanocomposite’s degrading property on dyes like methyl red and methyl orange under UV and visible light are the main objectives of the current work.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Copyright © by EnPress Publisher. All rights reserved.