Cities play a key role in achieving the climate-neutral supply of heating and cooling. This paper compares the policy frameworks as well as practical implementation of smart heating and cooling in six cities: Munich, Dresden and Bad Nauheim in Germany; and Jinan, Chengdu and Haiyan in China, to explore strategies to enhance policy support, financial mechanisms, and consumer engagement, ultimately aiming to facilitate the transition to climate-neutral heating and cooling systems. The study is divided into three parts: (i) an examination of smart heating and cooling policy frameworks in Germany and China over the past few years; (ii) an analysis of heating and cooling strategies in the six case study cities within the context of smart energy systems; and (iii) an exploration of the practical solutions adopted by these cities as part of their smart energy transition initiatives. The findings reveal differences between the two countries in the strategies and regulations adopted by municipal governments as well as variations within each country. The policy frameworks and priorities set by city governments can greatly influence the development and implementation of smart heating and cooling systems. The study found that all six cities are actively engaged in pioneering innovative heating and cooling projects which utilise diverse energy sources such as geothermal, biomass, solar, waste heat and nuclear energy. Even the smaller cities were seen to be making considerable progress in the adoption of smart solutions.
Introduction: With the adoption of the rural rehabilitation strategy in recent years, China’s rural tourist industry has entered a golden age of growth. Due to the lack of management and decision-support systems, many rural tourist attractions in China experience a “tourist overload” problem during minor holidays or Golden Week, an extended vacation of seven or more consecutive days in mainland China formed by transferring holidays during a specific holiday period. This poses a severe challenge to tourist attractions and relevant management departments. Objective: This study aims to summarize the elements influencing passenger flow by examining the features of rural tourist attractions outside China’s largest cities. Additionally, the study will investigate the variations in the flow of tourists. Method: Grey Model (1,1) is a first-order, single-variable differential equation model used for forecasting trends in data with exponential growth or decline, particularly when dealing with small and incomplete datasets. Four prediction algorithms—the conventional GM(1,1) model, residual time series GM(1,1) model, single-element input BP neural network model, and multi-element input BP network model—were used to anticipate and assess the passenger flow of scenic sites. Result: The multi-input BP neural network model and residual time series GM(1,1) model have significantly higher prediction accuracy than the conventional GM(1,1) model and unit-input BP neural network model. A multi-input BP neural network model and the residual time series GM(1,1) model were used in tandem to develop a short-term passenger flow warning model for rural tourism in China’s outskirts. Conclusion: This model can guide tourists to staggered trips and alleviate the problem of uneven allocation of tourism resources.
Papua, one of the provinces in Indonesia, is recognized for its limited infrastructure and high poverty rates. This limitation undoubtedly emphasizes the government’s special attention toward augmenting foreign and domestic investments by expanding industrial sectors to absorb more labor, thereby aiming to enhance the region’s economic performance. The focus of the study seeks to assess the extent to which foreign and domestic investments, industrial employment, and the proliferation of industries in Papua contribute to increasing the Gross Development Product (GDP) and reducing poverty. By employing secondary data from 2016 to 2022 and utilizing the Regression Data Panel method, it encompasses 29 districts. The findings reveal that domestic investment, employment in the industrial sector, and the number of industries significantly influence poverty rates. However, as conclusion, foreign investment, surprisingly, demonstrates no substantial impact on economic performance. This unexpected result might be attributed to issues linked with the inadequate quality of financial performance, which doesn’t align with the available investment funds. Utilizing the analytical network process (ANP), the study outlines two primary strategies. The first involves prioritizing investment expansion by focusing on both domestic and foreign investments. The second strategy emphasizes industrial revitalization through augmenting the number of industries and enhancing labor participation in the industrial sector.
With the accelerated pace of society and increasingly fierce competition across various fields, people’s daily stress continues to increase, and anxiety disorders have gradually become a prominent issue in the field of public mental health. Using the psychology work When Panic Attacks: The New, Drug-Free Anxiety Therapy That Can Change Your Life as an example, this paper explores the application of Relevance Theory in the translation of psychotherapy popular science texts. It summarizes the textual features and translation principles of psychotherapy popular science texts, and analyzes the methods and strategies to achieve optimal relevance between the source text and target text on the lexical and syntactic levels, aiming to provide references for future popular science translation practices.
Increasing populations in cities have created challenges for the urban environment and also public health. Today, lacking sport participation opportunities in urban settings is a global concern. This study conceptualizes and develops a theoretical framework that identifies factors associated with effective urban built environments that help shape and reshape residents’ attitude toward sport activities and enhances their participation. Based on a comprehensive review of literature and by following the Stimulus-Organism-Response (SOR) theory and attitude change theory, a four-factor measurement model is proposed for studying urban built environment, including Availability, Accessibility, Design, and Safety. Further examinations are made on how these factors are channeled to transform residents’ attitudes and behavior associated with participating in sport activities, with Affordability as a moderator. Discussions are centered around the viability of the developed framework and its application for future research investigations.
Copyright © by EnPress Publisher. All rights reserved.