In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Introduction: the presence of anti-CCP is an important prognostic tool for rheumatoid arthritis (RA), but its relationship with the activity of the disease and functional capacity is still being investigated. Objectives: to study the relationship between anti-CCP and the indices of disease activity, functional capacity and structural damage, by means of conventional radiography (CR) and magnetic resonance imaging (MRI), in stabilized RA. Methods: cross-sectional study of RA patients with one to 10 years of disease. The participants were subjected to clinical evaluation with anti-CCP screening. Disease activity was assessed by means of the Clinical Disease Activity Index (CDAI) and functional capacity by means of the Health Assessment Questionnaire (HAQ). CR was analyzed by the Sharp van der Heijde index (SmvH) and MRI by the Rheumatoid Arthritis Magnetic Resonance Image Scoring System (RAMRIS). Results: 56 patients were evaluated, with median (IIq) of 55 (47.5–60.0) years, 50 (89.3%) were female among whom 37 (66.1%) were positive for anti-CCP. The median (IIq) of CDAI, HAQ, SmvH and RAMRIS were 14.75 (5.42–24.97), 1.06 (0.28–1.75), 2 (0–8) and 15 (7–35), respectively. There was no association between anti-CCP and CDAI, HAQ, SmvH and RAMRIS. Conclusion: our results did not establish the association of anti-CCP with the severity of the disease. So far, we cannot corroborate the anti-CCP as a prognostic tool in RA established.
Introduction: Stenoses in the path of arteriovenous fistulas (AVF) for hemodialysis are a very prevalent problem and there is long experience in their treatment by percutaneous angioplasty (PTA). These procedures, however, involve non-negligible equipment requirements, exposure to radiation and intravenous contrast that are not beneficial for the patient and make their performance more complex. This study reviews our initial experience with Doppler ultrasound-guided angioplasty. Methods: Prospective cohort of patients with native AVF dysfunction due to significant venous stenosis treated by Doppler echo-guided PTA. AVF puncture, lesion catheterization, balloon localization and inflation, and outcome verification were performed under ultrasound guidance. Only one fistulography was performed before and another one after dilatation. As a control, the cases performed during the same period by the usual angiographic method were also collected. Results: Between February 2015 and September 2018, 51 PTAs were performed on native AVF, of which 27 were echogenic (mean age, 65.3 years; 63% male). The technical success rate was 96%. In 26% of cases, PTA was repeated due to residual stenosis after angiographic imaging. There were 7.3% periprocedural complications. 92% of the AVFs were punctured at 24 hours. Primary patency at 1 month, 6 months and 1 year was 100%, 64.8% and 43.6%, and assisted patency was 100%, 87.2% and 74.8%. There were no significant differences in immediate or late results with respect to angiographically guided AVF angioplasty. Conclusions: AVF-PTA can be performed safely and effectively guided by Doppler ultrasound, which simplifies the logistics required for its performance, although we still need to improve the capacity for early verification of the result with this imaging technique.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
Copyright © by EnPress Publisher. All rights reserved.