In this study, daily averages of air quality parameters were measured in two stations (S1 and S2) of the organized industrial district in Samsun. The meteorological variables were measured at only one station (S1), such as temperature, relative humidity, wind speed, solar radiation, and ambient pressure in 2007, and the daily promised limit for nitrogen dioxide has been especially exceeded at 206 times for 1st station. However, exceeds of the limit value in 2006 for 1st station was reduced by approximately 3.5 times. The daily nitrogen dioxide concentration did not exceed the daily limit of WHO[1] as for 2nd station. The results obtained showed that under the influence of dominant wind direction, the second station measurement results are higher than that of the first station. To determine all of the possible environmental effects, the measurements should be analyzed from a multi-point perspective.
The objective of this work was to evaluate the effect of potassium concentrations applied via fertigation on the growth, yield and chemical composition of eggplant ‘Ciça’ in a distroferric red Latosol. The treatments were composed of five concentrations of K2O (0, 36, 72, 108 and 144 kg ha-1 supplied via fertigation), using potassium chloride as a source, divided into six applications. The irrigation system was of the drip type and irrigation management was done via a “Class A” evaporometer tank. Harvest started at 62 days after transplanting (DAT) and lasted for five months. The variables evaluated were: plant height, number of leaves, fresh fruit mass, number of fruits per plant, yield per plant, productivity and classification of the fruits according to their length and diameter. At 85 DAT, fruit were collected for characterization as to the percentage of lipids, proteins and fibers. Although the potassium fertigation in cover provided a reduction in the production and productivity, the concentrations of 36 kg ha-1 and 72 kg ha-1 of K2O applied via fertigation, increased the physical-chemical characteristics of the fruits.
The use of saline water in agriculture is a viable alternative, considering the increased demand for fresh water. The objective of this study was to evaluate the growth and phytomass production of sugar beet under irrigation with water of different saline concentrations in a field experiment on the campus of the Federal University of Alagoas in Arapiraca. The treatments were five levels of electrical conductivity (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1). The design was in randomized blocks, with four repetitions. The maximum yield of sugar beet at 27 days after the application of saline treatments was obtained with a salinity of 3.0 dS m-1, for the variables plant height (PA), stem diameter (CD), root length (RC), aboveground dry phytomass (FSPA) and total dry phytomass (FST). At 42 days after the application of saline treatments, the variables aboveground fresh phytomass (FFPA), root fresh phytomass (FFR), total fresh phytomass (FFT), aboveground dry phytomass (FSPA) and total dry phytomass (FST) increased with increasing water salinity. Rain may have influenced the results obtained for the evaluations, performed at 42 days after the application of the saline treatments.
Some developmental projects are created by people-private partnerships (PPP), particularly where recovery is acquirable by levying the users. Such PPPs are successful for construction of roads, bridges, running toilet facilities and conveyance facility in mode of use and pay. Likewise, public-scientist partnerships (PSPs) will be successful, where monitored impacts can be used to derive benefit. But such example cases are not so popular in utilizing new research results and derive benefits from natural resources and enhance productivity. There is a demand for similar partnership projects in research area. In this study modality of the PSP to create boost engine for natural resource conservation and bring economic prosperity is established. A novel PSP launch was synthesized on useful food crop viz. finger millet (Elusiane corcona (l)), which has been known since long past, and now is regaining popularity. It was possible to enhance additional annual production of 5.755 million tonnes of finger millet grain, equivalent to additional income of Rs 11,510 crores. Against this the scientist partnership share was 0.49x million tonnes grain and economic equivalency of Rs 992 crores, which was just 7–8%, with same level of input in agriculture. Additional benefits were sustainability of production and resources consecration, reduction of greenhouse gas emission (GHGs), particularly nitrous oxide (N2O), largely emanating from agriculture and responsible for depletion of ozone layer. The finger millet stiff stem will be useable for production of ply-board filling material that will be innovative building material for housing and infrastructure developments and making furniture.
Copyright © by EnPress Publisher. All rights reserved.