The purpose of this study is to explore factors influencing the blockchain adoption in agricultural supply chains, to make a particular focus on how security and privacy considerations, policy support, and management support impact the blockchain adoption intention. it further investigates perceived usefulness as a mediating variable that potentially amplifies the effects of these factors on blockchain adoption intention, and sets perceived cost as a moderating variable to test its influence on the strength and direction of the relationship between perceived usefulness and adoption intention. through embedding the cost-benefit theory into the integrated tam-toe framework and utilizing the partial least squares structural equation modeling (PLS-SEM) method, this study identifies the pivotal factors that drive or impede blockchain adoption in the agricultural supply chains, which fills the gap of the relatively insufficient research on the blockchain adoption in agriculture field. the results further provide empirical evidence and strategic insights that can guide practical implementations, to equip stakeholders or practitioners with the necessary knowledge to navigate the complexities of integrating cutting-edge technologies into traditional agricultural operations, thereby promoting more efficient, transparent, and resilient agricultural supply chains.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
This paper aims to investigate the determinants of performance for insurance companies in Tunisia from 2004 to 2017. Namely, we consider three dimensions of determinants; those related to firms’ microenvironment, macroenvironment and meso or industry environment. The performance of insurance companies is measured using three criteria: Return On Assets (ROA), Return On Equity (ROE), and Combined Ratio. The independent variables are categorized into three groups: microeconomic variables (Firm Size, Financial leverage, Capital management risk, Volume of capital, and Age of the firm), meso-economic variables (Concentration ratio and Insurance Sector Size), and macroeconomic variables (Inflation, Unemployment, and Population Growth). The General Least Squares (GLS) regression technique is employed for the analysis. The study reveals that the financial performance of Tunisian insurance companies is positively influenced by firm size, capital amount, and risk capital management. On the other hand, it is negatively influenced by leverage level, industry size, concentration index, inflation, and unemployment. In terms of technical performance, the capital amount of the firm, industry size, age of the firm, and population growth have a positive impact. However, firm size, leverage, concentration index, and risk capital management negatively affect technical performance. This paper contributes to the existing literature by examining the determinants of performance specifically for insurance companies in Tunisia. Besides the classical proxies of performance, this paper has the originality of using the technical performance which is the most suitable for the case of Insurance companies.
A The meaning of life is the purpose that defines a person’s existence based on a set of fundamental objectives that give meaning to life or not. Furthermore, not all individuals have a meaning in life, and it may be absent at some point or stage of life. Objective: To analyze Peruvian older adults’ socioeconomic factors and the meaning of life. Method: A descriptive, comparative, quantitative cross-sectional study was conducted. One thousand older adults were intentionally selected through quotas of 100 older adults in 10 localities in Arequipa, Peru. They were administered a survey validated with high levels of reliability on the meaning of life and socioeconomic factors. Results: A moderate level of meaning in life was found. Most older adults believe that increasing age decreases the purpose of living, and existential emptiness grows. Conclusions: Statistically significant differences (p < 0.05) were found between the meaning of life and the following socioeconomic factors: retirement, religion, educational level, cohabitation, marital status, income, and occupation. It is understood that older adults who scored higher on these factors indicate having meaning in life because they still fulfill the role of providers for the family economy, being util to their families compared to the majority who scored low, which indicates an absence of meaning of life leading to an increase existential void.
China’s graduate quality management system is designed to ensure that students possess the necessary skills, knowledge, and competencies for future success. This system is rooted in China’s ambitious educational reforms aimed at cultivating a highly skilled workforce to drive economic growth and innovation. Effective graduate quality management significantly impacts employment levels, training models, and national policy formulation. This study investigates the quality management approaches of 56 vocational institutions in Yunnan Province using a 5-level questionnaire and a quantitative research methodology. A sample of 556 individuals was selected through stratified random sampling. Exploratory factor analysis identified five primary components of the quality management model: College graduate quality (mean = 4.56, SD = 0.49), teaching quality (mean = 4.39, SD = 0.42), hardware environment (mean = 4.38, SD = 0.44), social support (mean = 4.37, SD = 0.42), and job satisfaction (mean = 4.38, SD = 0.42). College graduate quality and teaching quality were the most influential factors, while hardware environment, social support, and job satisfaction had lesser impacts.
Copyright © by EnPress Publisher. All rights reserved.