Our previous research on social innovation examined the process, levels, and stakeholders of social innovation, as well as its relationship with technical and technological innovation. The present study analyzes the spatial image created by the social innovation potential and investigates its relationship with the economic power of the neighborhoods. The most important conclusion of the study is that the basic territorial inequality dimensions are the same in the case of both the social innovation potential and the district’s economic strength. The difference is primarily to be found in concentration, as economic power is much more concentrated in the capital and the most important economic and tourism centers than the social innovation potential. We can therefore state that developments based on social innovation can solve a lot of the highly concentrated spatial structure in Hungary.
The study aims to explore the role of artificial intelligence in enhancing the efficiency of public relations practitioners in Jordanian telecommunication companies. This study belongs to the category of descriptive research and adopted a survey methodology. The study surveyed (86) individuals representing the community of public relations practitioners and customer service personnel in the Jordanian telecommunication companies Zain and Orange.The study findings revealed that less experienced public relations personnel in Zain and Orange, with less than five years of experience, exhibit greater acceptance and enthusiasm for using artificial intelligence applications compared to their more experienced counterparts. The study also indicated that most public relations practitioners in Zain and Orange perceive artificial intelligence applications to have a moderate to significant contribution to achieving public relations functions and enhancing their work, reflecting technological advancement and the need to adapt to rapid changes in the business environment. Moreover, the study also discussed the limits, including that artificial intelligence can analyze large amounts of data related to the market and the audience, which provides further research and study.
In recent years, Vietnam has achieved great achievements in the implementation of economic growth, which has contributed to reducing poverty and is highly appreciated by the international community. Although Vietnam has made remarkable achievements in reducing poverty and meeting the requirements of sustainable development, there are still many challenges and work to be done. Vietnam needs to continue to push ahead to improve the quality of life for the poorest, reduce the development gap between regions, and strengthen its response to climate change and the environment. This study uses a qualitative method to analyze the current situation of poverty reduction in Vietnam. The article also uses analytical, synthetic, logical, and historical methods to clarify the results and limitations of poverty reduction. The value of the research helps the Vietnamese government to be aware of the results and limitations of poverty reduction and suggests scientific and timely solutions to implement poverty reduction work in Vietnam.
The improper disposal of litter by tourists poses a significant threat to tourism destinations worldwide, including in Indonesia. To mitigate marine litter, promoting eco-friendly behavior (EFB) among tourists is essential. This study applies the extended Theory of Planned Behavior (TPB), which posits that an individual’s behavior is driven by their attitudes, subjective norms, and perceived behavioral control, to better understand the factors influencing eco-friendly behavioral intentions. In this research, ecological consciousness and ecological knowledge were added to the traditional TPB framework to gain deeper insights into tourist behavior. Data were collected through a structured questionnaire from 876 visitors to Lake Singkarak, Indonesia. The findings demonstrate that the inclusion of ecological consciousness and ecological knowledge significantly enhances the predictive power of the TPB model in explaining eco-friendly behavioral intentions. Based on these results, raising public awareness, improving government management, and enhancing the quality of lake attractions are recommended to encourage responsible tourism. These measures can reduce litter and conserve lake habitats, ultimately contributing to the sustainability of tourism in the region.
In the Indian context, financial planning for salaried individuals has gained increased importance due to economic fluctuations, rising living costs, and the need for robust retirement planning. Despite its importance, there is limited research on the specific factors that influence financial decision-making among salaried employees in India. Understanding these determinants is essential for developing effective strategies to enhance financial well-being among employees. This study explores the key factors influencing financial decision-making among employees, including financial goals, emergency savings, retirement planning, budgeting, financial confidence and literacy, financial stress, use of tax-saving instruments, income level, risk tolerance, and debt levels. A sample of 549 employees from diverse sectors in Uttar Pradesh participated in this research, highlighting the critical aspects of personal financial management that impact financial well-being. The study used a questionnaire-based survey to gather data on factors affecting financial decision-making. Descriptive statistics, correlation, and regression analyses were employed to identify significant predictors. The results reveal that financial literacy, access to resources, attitudes toward retirement planning, and cultural norms significantly influence financial decisions. Additionally, income level, job stability, and social support are crucial in shaping employees’ financial planning. The study recommends enhancing employees’ financial decision-making by offering financial education programs, budgeting tools, retirement planning assistance, debt management programs, tax planning workshops, financial counselling services, and employer match programs for retirement savings. These initiatives aim to boost financial literacy and confidence, enabling employees to make informed financial decisions and improve their financial well-being.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks’ performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
Copyright © by EnPress Publisher. All rights reserved.