In today’s digital education landscape, safeguarding the privacy and security of educational data, particularly the distribution of grades, is paramount. This research presents the “secure grade distribution scheme (SGDS)”, a comprehensive solution designed to address critical aspects of key management, encryption, secure communication, and data privacy. The scheme’s heart lies in its careful key management strategy, offering a structured approach to key generation, rotation, and secure storage. Hardware security modules (HSMs) are central to fortifying encryption keys and ensuring the highest security standards. The advanced encryption standard (AES) is employed to encrypt graded data, guaranteeing the confidentiality and integrity of information during transmission and storage. The scheme integrates the Diffie-Hellman key exchange protocol to establish secure communication, enabling users to securely exchange encryption keys without vulnerability to eavesdropping or interception. Secure communication channels further fortify graded data protection, ensuring data integrity in transit. The research findings underscore the SGDS’s efficacy in achieving the goals of secure grade distribution and data privacy. The scheme provides a holistic approach to safeguarding educational data, ensuring the confidentiality of sensitive information, and protecting against unauthorized access. Future research opportunities may centre on enhancing the scheme’s robustness and scalability in diverse educational settings.
This study focuses on enhancing the maintenance processes of centrifugal pumps at Soekarno-Hatta Airport’s Water Treatment Unit in Indonesia, crucial for meeting the clean water needs of the airport, which served around 19.8 million passengers in 2022. Using a qualitative methodology, the research involved focus group discussions with the unit’s operators, technicians, and engineers to pinpoint maintenance challenges and devise solutions. Key findings reveal issues such as insufficient routine maintenance, unplanned repairs, and inadequate staffing, leading to operational disruptions and pump failures. The study highlights the role of Total Productive Maintenance (TPM) in reducing machine breakdowns and improving efficiency. It emphasizes the critical role of centrifugal pumps in the airport’s water supply system. The research proposes several corrective measures, adhering to the 5W + 1H framework, including regular lubrication, bearing replacements, hiring more staff, and advanced training on PLC systems. These actions aim to rectify immediate maintenance problems and establish a foundation for the long-term effectiveness of the pump systems. Conclusively, the study underscores the need for a comprehensive maintenance strategy that aligns with standard operating procedures and preventive maintenance. This approach is essential for boosting the operational performance and reliability of the Water Treatment Unit. It has broader implications for similar infrastructure facilities, underscoring the importance of efficient maintenance management.
This research aims to develop a Synergy Learning Model in the context of science learning. This research was conducted at Islamic Junior High School, Madrasah Tsanawiyah Negeri 2 Medan, involving 64 students of Grade 7 as the research subject. The method used in this research refers to the development research approach (R&D). In collecting the data, the research employed test and non-test techniques. The results prove that the Synergy learning model developed is effective in improving student learning outcomes. This is evident through the t-test statistical test where the t-count of 4.26 is higher than the t-table of 1.99. In addition, the level of practicality with a score of 3.39 is categorized as practical. This learning model emphasizes the learning process that supports the development of science skills and develops students' competencies in planning, collaborating, and critically reflecting. The findings of this study contribute to pedagogical practices and literature in the field of science learning.
Sustainability has become a generalized concern for society, specifically businesses, governments, and academia. In the specific case of universities, sustainability has been approached from different perspectives, some viewing it from environmental practices, management initiatives, operational criteria, green buildings, and even education for sustainable development. This research focuses on sustainability as a managerial practice and investigates how it affects the performance of five private universities in Medellin, Colombia. For this purpose, a literature review using a mixed sequential approach, including bibliometric and content analysis, was initially conducted. In the s second phase, more than 5000 responses from students, professors, and employees of the five mentioned private universities were collected. A previously validated instrument for both sustainability and performance was applied in the quantitative phase, and a novel dimensionality of the constructs was proposed by conducting an exploratory factor analysis using the SPSS software. Results were then processed through a structural equation analysis with the Smart PLS software. The impact of sustainability on university performance is verified, making some managerial recommendations.
This paper uses quantitative research methods to explore the differences in the impact of virtual influencers on different consumer groups in the context of technological integration and innovation. The study uses DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering technology to segment consumers and combines social media behavior analysis with purchase records to collect data to identify differences in consumer behavior under the influence of virtual influencers. Consumers’ emotional resonance and brand awareness information about virtual influencers are extracted through sentiment analysis technology. The study finds that there are significant differences in the influence of virtual influencers on different consumer groups, especially in high-potential purchase groups, where the influence of virtual influencers is strong but short-lived. This paper further explores the deep integration of virtual influencer technology with new generation information technologies such as 5G and artificial intelligence, and emphasizes the importance of such technological integration in enhancing the endogenous and empowering capabilities of virtual influencers. The research results show that technological integration and innovation can not only promote the development of virtual influencers, but also provide new technical support for infrastructure construction, especially in the fields of smart cities and industrial production. This paper provides a new theoretical perspective for the market application of virtual influencers and provides practical support for the application of virtual technology in infrastructure construction.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator’s Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
Copyright © by EnPress Publisher. All rights reserved.